New Gallery Pages
This is the new version of the gallery pages. If you have any suggestions or notice something broken, please reach out!
Global Precipitation Measurement
Overview
The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. Building upon the success of the Tropical Rainfall Measuring Mission (TRMM), the GPM concept centers on the deployment of a "Core" satellite carrying an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. Through improved measurements of precipitation globally, the GPM mission will help to advance our understanding of Earth's water and energy cycle, improve forecasting of extreme events that cause natural hazards and disasters, and extend current capabilities in using accurate and timely information of precipitation to directly benefit society. GPM, initiated by NASA and the Japan Aerospace Exploration Agency (JAXA) as a global successor to TRMM, comprises a consortium of international space agencies, including the Centre National d'Études Spatiales (CNES), the Indian Space Research Organization (ISRO), the National Oceanic and Atmospheric Administration (NOAA), the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), and others. The GPM Core Observatory launched from Tanegashima Space Center, Japan, at 1:37 PM EST on February 27, 2014.
For more information and resources please visit the Precipitation Measurement Missions web site.
Near Real-Time IMERG
The global IMERG precipitation dataset provides rainfall rates for the entire world every thirty minutes.
-
Near Real-Time Global Precipitation from the Global Precipitation Measurement Constellation
An animation of the most currently available global precipitation data from IMERG. ||
2023 Hurricanes & Typhoons
-
Link
NASA Tracks Freddy, Longest-lived Tropical Cyclone on Record
Tropical Cyclone Freddy first made landfall along the east coast of Madagascar just north of the town of Mananjary on Feb. 21, 2023, as a Category 3 cyclone with average winds reported at ~81 mph (130 km/h) and gusts up to ~112 mph (180 km/h). After crossing over Madagascar Freddy continued westward over the Mozambique Channel before making landfall again along the east coast of Mozambique just south of Vilankulos as a moderate tropical storm with sustained winds estimated at 50 mph. Despite being weaker at landfall, Freddy caused widespread flooding across parts of Mozambique due to the storm stalling out near the coast after making landfall.
Incredibly, Freddy drifted back out over the Mozambique Channel, nearly making landfall along the southwest coast of Madagascar. It then changed direction, re-intensified, weakened, re-intensified one last time, and made landfall once again on March 11 near Quelimane, Mozambique, as a Category 1 cyclone with sustained winds reported at 90 mph.
Meteorologically, Freddy has been a remarkable storm, becoming the longest-lived tropical cyclone in recorded history, lasting over five weeks. Freddy originated from a weak area of low pressure that was embedded in a monsoon trough of low pressure stretching east-west across the Timor Sea between northern Australia and southern Indonesia. On Feb 6, 15 days before it would make its first landfall in Madagascar, both the Australian Bureau of Meteorology and the US Joint Typhoon Warning Center reported the formation of Tropical Cyclone Freddy about 420 miles northwest of the northwest coast of Australia. In a rare but not unprecedented event, Freddy tracked across the entire Indian Ocean from east to west in almost a straight line with very little deviation in latitude. Along the way, Freddy underwent four separate rapid intensification cycles, the first southern hemisphere storm in history to do so. After hitting Mozambique the first time and re-emerging back over the Mozambique Channel, Freddy underwent at two additional rapid intensification cycles resulting from the competing effects of warm water, wind shear and dry air. Freddy was also the first storm to the reach the equivalent of Category 5 intensity on the Saffir-Simpson scale for 2023. In addition to being the longest-lived tropical cyclone in recorded history, Freddy set the record for having the highest accumulated cyclone energy (ACE) of any storm in history. ACE is an index used to measure the total amount of wind energy associated with a tropical cyclone over its lifetime. NASA’s IMERG satellite precipitation product is ideal for monitoring and studying tropical cyclones around the world, especially over the open ocean where ground-based observations are sparse. IMERG uses precipitation estimates from a constellation of satellites united by the GPM Core Observatory to generate maps of global precipitation updated every 30 minutes in near real-time. The above animation shows IMERG surface rainfall estimates associated with the passage of Tropical Cyclone Freddy across the Indian Ocean as well as Freddy’s corresponding track and intensity. The animation begins at on Feb. 6, 2023, just before Freddy is about to form northwest of Australia. Over the course of the storm’s history, IMERG reveals a variety of precipitation features and trends that relate closely to the variations in Freddy’s intensity.
Tropical cyclones derive their energy from latent heating, which comes primarily from cloud condensation. Although essentially undetectable directly, the most significant latent heat release occurs within deep convective towers, which are associated with high cold cloud tops and areas of heavy rain at the surface. The IMERG animation illustrates this association between increased surface rain intensity and storm intensity - whenever Freddy undergoes a period of intensification, it is preceded by an increase in heavy rain. However, for the storm to really respond to the latent heating, that heating must occur near the storm’s center. For example, IMERG shows heavier rain on Feb. 8, but it is too far north of the center, and Freddy continues to weaken. Conversely, an absence of heavy rain near the center typically causes the storm to weaken. IMERG is also able to broadly resolve Freddy’s structure over the course of its lifetime, ranging from a highly asymmetrical rain field with most of the rain located on one side of the center, which occurs when the storm is weak or undergoing wind shear, to symmetrical when the storm is stronger, to having a full eye when the storm has an intense and well-developed circulation.
The end of the animation shows the total estimated rainfall for the entire period. IMERG shows that although heavy rain near the core of the storm is key to the storm maintaining or increasing in intensity, the highest overall rainfall totals are much more closely correlated to slow storm speed as evidenced by the extreme rainfall totals over Mozambique despite Freddy having weakened to a tropical storm. Here Freddy essentially stalls out for several days (Feb. 24 to March 2), allowing a sizeable portion of the storm’s circulation to remain over the warm waters of the Mozambique Channel and rainbands to continuously form and move inland. The result is rainfall totals on the order of ~16 to 31 inches (~400 to 800 mm, shown in purple) over parts of southern Mozambique and along the coast. Peak rainfall totals over Madagascar, where Freddy moved steadily across the island, are on the order of ~16 inches (400 mm). According to the latest media reports Freddy has been responsible for over 300 deaths in Mozambique, Madagascar and Malawi, and has caused widespread damage throughout these regions.
2022 Hurricanes & Typhoons
-
Nicole Brings Heavy Rain to Florida and part of the Southeast
Tropical Storm Nicole at approxiately 16:30Z on November 10, 2022. Earlier that same day, Nicole made landfall on the eastern Florida coast as a category 1 hurricane. || Hurricane Nicole hit the East Coast of Florida early morning, November 10th, 2022, at 3:00 am (EST) just south of Vero Beach at North Hutchinson Island. But, unlike Hurricane Ian which came ashore in late September as a powerful Category 4 storm that devasted parts of southwest Florida, Nicole made landfall as a minimal Category 1 storm. Though far less intense, Nicole still brought some heavy rain and gusty winds to the region.Nicole originated from a non-tropical low pressure system over the southwestern Atlantic. As a result, when the National Hurricane Center (NHC) was first able to identify a rather well-defined center at 4:00 am EST on the morning of the 7th, the low-level circulation was fairly broad with the strongest winds well away from the center, so the system was named Subtropical Storm Nicole. At this time, the center was located about 555 miles due east of the northwestern Bahamas with initial movement was towards the northwest. Nicole maintained its subtropical storm structure throughout the 7th, but by the morning of the 8th, deep convective storms had emerged near the center, suggesting that Nicole was poised to intensify and had transitioned from subtropical to tropical. As a result, Nicole was renamed as a tropical storm by NHC at 10:00 am EST on the 8th. The system also took on a westward track as a deep layer ridge of high pressure north of Nicole shunted the system back towards Florida. Nicole slowly but steadily intensified throughout the day with maximum sustained winds increasing to 70 mph, nearly hurricane strength; however, further intensification ceased as NHC reported that evening that dry air was likely inhibiting thunderstorm development near the center.The combination of NASA’s IMERG precipitation product and the GPM Core Observatory satellite with its array of active and passive sensors is ideal for monitoring and studying tropical cyclones, including hurricanes. The following animation shows Nicole as it passes through the Bahamas and into central Florida. The first part of the animation shows a time loop of IMERG surface rainfall estimates beginning at 16:11 UTC (11:11 am EST) on November 9, 2022 when Nicole was nearing Great Abaco Island in the Bahamas. At the start, IMERG shows that Nicole’s precipitation field is attached to the southwestern end of a long quasi-linear band of precipitation associated with a midlatitude frontal system extending well out into the central and northern Atlantic. IMERG also shows that most of the precipitation, including the moderate and heavy rain (shown in orange and red, respectively), associated with Nicole is fairly well north and west of the center. However, enough convective storms had formed near the center as evidenced by areas of moderate to occasionally heavy areas of rain wrapping nearer to the center around the southeast side of the storm, that Nicole was able to reach hurricane strength at 6:00 pm EST (23:00 UTC) while making landfall on Grand Bahama Island. IMERG shows Nicole continuing on to make landfall on Florida’s east coast on the morning of the 10th and continuing on across the peninsula. By the end of the loop at 16:21 UTC (11:21 am EST) on the 10th, after the center had crossed most of central Florida, heavier rain bands are located over western and northern Florida and southeastern Georgia.It was around this time that the GPM Core Observatory flew over the center of Nicole. The second part of the animation shows a detailed look into the structure and intensity of the precipitation within Nicole from the GPM Core Observatory around 16:30 UTC (11:30 am EST) on the 10th of November. Surface rainfall estimates from the GPM Microwave Imager (GMI) show Nicole is very asymmetric with a heavy rainband (shown in red) out over the northeast Gulf of Mexico west of the center extending northward up across the central Florida panhandle, back across southeast Georgia, and into coastal South Carolina with very little rain evident south and east of the center over the southern half of the Florida peninsula. GPM’s Dual-frequency Precipitation Radar (DPR) actively scanned the storm to provide a 3D perspective of its precipitation. Areas shaded in blue show frozen precipitation aloft, mainly in the form of snow but also graupel (rimed snow particles) and frozen drops, which are both present in the cores of active thunderstorms. The DPR shows that the taller, deeper thunderstorms within Nicole are associated with the heavier rain located well north and west of the center. In fact, thunderstorm activity near the actual center (located in the middle of the DPR cross section midway between the two areas of deeper storms) is very modest with no tall towers and no heavy rain. The most dominant rainband being located well away from the center shows that Nicole has retained some of its earlier subtropical storm structure. At the time of the GPM overpass, Nicole was around 35 miles NNE of Tampa moving to the WNW with maximum sustained winds reported at 50 mph by NHC. Nicole then continued onward along the coast of the Florida Big Bend and into northern Georgia while further weakening. So far, the storm is being blamed for 6 deaths in the Dominican Republic and 4 in Florida. ||
-
Hurricane Ian Forms South of Cuba
Hurricane Ian off the Cuban Coast on September 26, 2022 at 20:29Z. || Hurricane Ian became one of the strongest hurricanes on record to strike Florida when it made landfall September 28th, 2022, around 3:10 pm (EDT) as a Category 4 storm near Cayo Costa about 20 miles west-southwest of Punta Gorda on Florida’s southwest coast. This same area was hard hit by Hurricane Charley back in 2004, which also made landfall as a strong Category 4 storm. Both storms passed over and responded to the deep, warm waters of the southeastern Gulf of Mexico.Ian originated from a tropical easterly wave that propagated westward off the coast of Africa across the tropical Atlantic and entered the eastern Caribbean on the evening of the 21st of September. Two days later, on the morning of the 23rd, this wave had organized enough to become a tropical depression before strengthening into Tropical Storm Ian later that same evening. With its array of active and passive sensors, the GPM Core Observatory satellite is ideal for monitoring and studying tropical cyclones, including hurricanes. The following animation follows Ian as moves out of the central and into the northwestern Caribbean in the direction of western Cuba. The first part of the animation shows a time loop of surface rainfall estimates beginning at 18:57 UTC (2:57 pm EDT) on 25 September from NASA’s IMERG precipitation product. These surface rainfall estimates are useful for showing not only the track but also the time evolution of tropical cyclones. At the start of the loop, IMERG shows some banding with generally weak curvature and a mixture of light to moderate to heavy rain rates scattered across Ian’s circulation. By the end of the IMERG loop at 19:34 UTC (3:34 pm EDT) on the 26th, much more distinct rainbands exhibiting strong curvature and containing coherent areas of heavy rain (red areas) wrap completely around the storm’s center, indicative of a much larger and stronger cyclonic circulation. At the start of IMERG loop, Ian was a moderate tropical storm with maximum sustained winds reported at 50 mph by the National Hurricane Center (NHC). By the end of the loop, Ian was a Category 1 hurricane with maximum sustained winds reported at 85 mph and on its way to becoming a Category 2 hurricane just a short time later.The second part of the animation shows a detailed look into the structure and intensity of the precipitation within Ian from the GPM Core Observatory after it flew over the center of Ian around 19:22 UTC (3:22 pm EDT) on the 26th when the storm was just south of Cuba. Surface rainfall estimates from the GPM Microwave Imager (GMI) show heavy rainbands (in red) wrapping completely around the storm with intense rain rates (shown in magenta) wrapping around the western side of the center. GPM’s Dual-frequency Precipitation Radar (DPR) actively scanned the storm to provide a 3D perspective of its precipitation. Areas shaded in blue show frozen precipitation aloft, mainly in the form of snow but also graupel (rimed snow particles) and frozen drops, which are both present in the cores of active thunderstorms. The structure and height of these particles can suggest future trends in the storm’s intensity. The DPR shows deep towers that are producing intense rain within the western and southern parts eyewall. These features suggest strong thunderstorms are actively releasing heat into Ian’s core circulation and priming the storm for possible further intensification. At the time of the GPM overpass, Ian moving was to the north-northwest around the western edge of a midlevel ridge in the direction of Cuba with maximum sustained winds reported at 85 mph by NHC. However, less than 2 hours later at 2100 UTC (5:00 pm EDT) Ian’s sustained winds were up to 100 mph, making it a Category 2 hurricane. Ian continued to strengthen and made landfall early the next morning at 4:30 am (EDT) on the 27th as a Category 3 storm with sustained winds reported at 125 mph by NHC near the town of La Coloma in western Cuba. Ian weakened slightly after crossing over Cuba before re-intensifying over the southeast Gulf of Mexico and striking southwest Florida. ||
-
Fiona Becomes a Major Hurricane in the Atlantic
Hurricane Fiona west of Bermuda on September 23, 2022 at 6:06 UTC. || After leaving the Caribbean, Hurricane Fiona became both the strongest and the first major hurricane of the 2022 Atlantic hurricane season as it made its way northward through the western Atlantic. Fiona began as an African easterly wave that moved across the tropical Atlantic in the direction of the Caribbean. While still about 800 miles east of the Leeward Isles, this wave organized into a tropical depression on September 14th. Later that same day, the depression strengthened and became Tropical Storm Fiona. Fiona remained a moderate tropical storm as it passed through the Leeward Isles on the evening of the 16th near Guadeloupe with maximum sustained winds reported at 50 mph by the National Hurricane Center (NHC). After entering the northeastern Caribbean, Fiona took a west-northwest track in the direction of Puerto Rico and began to slowly intensify, becoming a Category 1 hurricane at 11 am (AST) on the 18th just before making landfall at 3:20 pm (AST) near Punta Tocon with maximum sustained winds estimated at 85 mph. After passing over the southwest tip of Puerto Rico, Fiona emerged over the Mona Passage before making landfall in the Dominican Republic early the next morning at 3:30 am AST on the 19th near Boca de Yuma with sustained winds of 90 mph.After passing over northeast Hispaniola, Fiona took a northwest track as it re-emerged into the Atlantic around midday on the 19th in the direction of the Turks and Caicos Islands. As it moved away from Hispaniola, Fiona was able to overcome some moderate southwesterly wind shear and began to intensify over warm waters, becoming a Category 2 storm later that afternoon. Early on the morning of the 20th at 2am (AST) , Fiona became a major Category 3 hurricane with sustained winds reported at 115 mph as it born down on Grand Turk Island. After passing near Grand Turk Island, Fiona intensified further becoming a Category 4 storm with sustained winds of 130 mph early on the morning of the 21st as it headed due north about 755 miles southwest of Bermuda. Fiona maintained its intensity throughout the day on the 21st as it continued northward over the open western Atlantic well east of the US East Coast. Fiona continued to maintain its intensity on the 22nd as it accelerated northward ahead of a deep upper-level trough of low pressure over the northeastern US, passing west and northwest of Bermuda.Around this time, at about 05:30 UTC (1:30 AST) on the morning of the 23rd, the GPM Core Observatory satellite passed over the center of Fiona when the center was located about 185 miles due west of Bermuda. Corresponding images of surface rain rates estimated from the GPM Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR) (inner swath) show a large, intense outer rainband wrapping nearly completely around the storm well away from the center. This is generally separated by an area of weak rain with another area of more intense rain located closer to the center wrapping around the southern, eastern and western parts of the storm. This type of structure is generally characteristic of a large, intense storm that has passed its peak intensity. Over time, hurricane wind fields tend to expand away from the center. Echo top heights derived from the GPM DPR provide a 3D perspective of the precipitation within Fiona. The brighter red areas show that thunderstorms are still active in the southern and eastern portions of the eyewall and helping to maintain its intensity, which was still reported at 130 mph by NHC. However, soon after these images were taken, Fiona began to weaken due to the effects of increasing vertical wind shear. Fiona is forecast to continue to weaken and transition to a post tropical storm but remain near hurricane intensity as closes in on the Canadian Maritimes. ||
-
Super Typhoon Nanmadol intensifies on its way to Japan
Typhoon Nanmadol as it approaches Japan on September 16, 2022. || Super Typhoon Nanmadol became one of the strongest typhoons to threaten Japan since records began in 1951. Nanmadol began as a tropical disturbance, basically an area of active thunderstorms, on September 11th southeast of Iwo Jima about midway between Tokyo and Guam. After moving to the southwest for 2 days, this disturbance became better organized and formed into a depression on the 13th. The system then made a counterclockwise loop, moving first back to the northeast before turning back again towards the west. Over this time, the system slowly intensified, becoming Tropical Storm Nanmadol just before its westward turn. At this point, Nanmadol responded to a favorable environment, including sea surface temperatures (SSTs) in the area running 0.5 to over 1.0OC above normal due in part to the ongoing La Niña, and began to steadily intensify as it headed for the southern part of Japan, becoming a typhoon on the afternoon of the 15th, a category 3 typhoon on the morning of the 16th , and a category 4 super typhoon on the evening of the 16th with maximum sustained winds estimated at 150 mph by the Joint Typhoon Warning Center (JTWC). It was during this transition from typhoon to super typhoon, at 7:57 UTC (4:57 pm JST) 16 September, that the NASA / JAXA GPM Core Observatory satellite overflew Nanmadol, providing a detailed look into the storm’s structure.With its array of active and passive sensors, the GPM Core Observatory satellite is ideal for monitoring and studying tropical cyclones. This data visualization shows Nanmadol in the West Pacific beginning on the 15th of September 2022 as the storm was moving northwest towards southern Japan, though still far from landfall. The animation first shows a time loop of surface rainfall estimates from NASA’s IMERG precipitation product overlaid on IR data from the CPC global cloud cover composite. At the start of the loop at 07:41 UTC, IMERG shows that Nanmadol is already a well-defined typhoon having a distinct eye with moderate to heavy rain wrapping completely around the center. IMERG also reveals the size of Nanmadol’s large cyclonic (counterclockwise) circulation with curved rainbands wrapping around the center of low pressure well away from the center in nearly all directions. Over the course the IMERG loop, Nanmadol strengthened from a category 1 typhoon to a category 4 super typhoon. The second part of the visualization shows a detailed look into the structure and intensity of the precipitation within Nanmadol. Surface rainfall estimates from the GPM Microwave Imager (GMI) show heavy rain (in red) wrapping around the western and southern portions of the storm well away from the center as well as rainbands approaching the coast of Japan well to the north (green areas). GPM’s Dual-frequency Precipitation Radar (DPR) actively scanned the storm to provide a 3D perspective of its precipitation. Areas shaded in blue show frozen precipitation aloft. This is mainly in the form of snow but can also be graupel, which are rimed snow particles, and frozen drops, which are both present in the cores of active thunderstorms. Moreover, the structure and height to which these particles extend can provide additional information on future trends. The DPR shows that Nanmadol’s eyewall is both deep and complete, creating what is known as a “stadium effect” with a ring of tall towers surrounding a void in the center, which is the eye. This structure is only associated with mature and intense tropical cyclones and suggests Nanmadol will either maintain its intensity or strengthen. The tall towers result from strong thunderstorm updrafts generating and carrying the particles aloft. Associated with this are intense rain shafts (shown in magenta) that extend down towards the surface. Together these features suggest strong thunderstorms are actively releasing heat into Nanmadol’s core circulation and priming the storm for possible further intensification.At the time of the GPM overpass, Nanmadol’s maximum sustained winds were estimated at 130 mph by JTWC. Just over 4 hours later at 1200 UTC September 16th, they were estimated at 150 mph, making Nanmadol a super typhoon. Nanmadol would go on to reach a peak intensity of 155 mph before starting to weaken as it neared the Japanese coast. Nanmadol made landfall on the 18th as a category 3 storm with sustained winds of around 110 mph near Kagoshima city on the island of Kyushu. Nanmadol then turned to the northeast and moved along the west coast of Honshu before crossing back out into the Pacific east of Japan. The storm has brought heavy rains to much of Japan and is so far being blamed for 2 deaths. ||
2021 Hurricanes & Typhoons
-
2021 Hurricane Season through September
This data visualization shows hurricane tracks over clouds over precipitation over sea surface temperatures from May 1 through September 30th, 2021. This presentation was created for the COP 26 Conference. || This visualization shows the hurricanes and tropical storms of 2021 as seen by NASA’s Integrated Multi-satellitE Retrievals for GPM (IMERG) - a data product combining precipitation observations from infrared and microwave satellite sensors united by the GPM Core Observatory. IMERG provides near real-time half-hourly precipitation estimates at ~10km resolution for the entire globe, helping researchers better understand Earth’s water cycle and extreme weather events, with applications for disaster management, tracking disease, resource management, energy production and food security. IMERG rain rates (in mm/hr) are laid under infrared cloud data from the NOAA Climate Prediction Center (CPC) Cloud Composite dataset together with storm tracks from the NOAA National Hurricane Center (NHC) Automated Tropical Cyclone Forecasting (ATCF) model. Sea surface temperatures (SST) are also shown over the oceans, derived from the NASA Multi-sensor Ultra-high Resolution (MUR) dataset, which combines data from multiple geostationary and orbiting satellites. Sea surface temperatures play an important role in hurricane formation and development, with warmer temperatures linked to more intense storms. This data visualization was done for the United Nations Climate Change Conference - Conference of the Parties (COP) 26. The 2021 hurricane season officially ends November 30th. This data visualization will be periodically updated until that date. ||
-
Hurricane Nicholas Brings More Heavy Rain to the Northern Gulf Coast
This data visualization depicts Hurricane Nicholas on September 14, 2021 several hours after making landfall along the Northern Gulf coast. Although Nicholas was not a powerful or long-lived hurricane, it did bring several inches of rain to a region that had recently been hit by powerful Hurricane Ida two weeks prior. || Although it only reached hurricane status for a brief period, Hurricane Nicholas made an impact on the northern Gulf Coast by bringing heavy rains to an area still recovering from the devastating effects of powerful Hurricane Ida, which made landfall in Louisiana just over 2 weeks earlier. Nicholas formed after a tropical wave passed over the Yucatan Peninsula and into the Bay of Campeche, providing a focus for shower and thunderstorm development. On the morning of Sunday September 12th, the National Hurricane Center (NHC) found that this area of storms had developed a closed circulation with sustained winds of 40 mph and so designated it as Tropical Storm Nicholas. Nicholas was affected by several competing factors: the warm waters of the Gulf of Mexico, nearby land, dry air, and windshear. The result was that Nicholas struggled to organize and form a coherent center due to the effects of southwesterly wind shear as it tracked northward towards the Texas coast. In fact, late that same evening on the 12th, the center actually re-formed well to the north-northeast of the previous center, causing the track to jump forward. After reforming its center, Nicholas finally started to tap into the warm waters of the Gulf and began to strengthen on the morning of 13th as it approached the Texas-Mexico border. However, Nicholas continued to be affected by windshear throughout the day as the storm continued northward just off the Texas coast; the net result was slow strengthening until finally at 10 pm CDT on the evening of the 13th, just before making landfall, NHC reported that Nicholas had become a minimal Category 1 hurricane with sustained winds of 75 mph. Nicholas made landfall shortly thereafter at 12:30 am CDT on the 14th on the Matagorda Peninsula near Sargent Beach, TX. Several hours later at 11:11 UTC (6:11 am CDT), when the center was located just southwest of Houston, TX, the NASA / JAXA GPM Core Observatory satellite flew over Nicholas. This animation shows rainfall estimates from NASA's IMERG multi-satellite precipitation product and NOAA GOES-E satellite cloud data in association with the passage of Nicholas prior to the time of the GPM overpass followed by a detailed look into the 3D structure and intensity of precipitation within Nicholas using data from the GPM overpass. IMERG shows heavy rain (red areas) remaining mostly out over the Gulf on the eastern side of Nicholas as the storm is moving northward toward the Texas coast. As Nicholas nears the coast, heavy to moderate rain (red and orange areas, respectively) begins to push inland over southeast Texas and southern Louisiana. At the time of the overpass, rainfall rates derived from the GPM Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR) show heavy rains (in red) extending from southeast Texas eastward across most of southern Louisiana. These rain areas are all located northeast of the center. GPM also shows an intense rainband (shown in magenta and red) extending southward from the coast for several hundred km well east of the center. GPM shows that there is almost no rain west of the center. This highly asymmetric structure is a result of Nicholas not being able to fully develop before making landfall coupled with the fact that the eastern side of Nicholas’ counterclockwise circulation was located over the warm waters of the Gulf while the western side was drawing down dry air over land. GPM’s DPR also shows that the highest reaching precipitation echoes (i.e., the tallest storms, shown in blue shading) are collocated with the most intense rain areas within the prominent rainband east of the center out over the Gulf.After landfall, Nicholas quickly weakened and slowed to a crawl with the remnant low becoming almost stationary over southwestern Louisiana for the next few days. Nicholas has resulted in 4 to 8 inches of rain with locally higher amounts across several areas of the northern Gulf Coast. The storm has also left several hundred thousand people without power from the Houston area and into Louisiana.Learn more about how NASA monitors hurricanes. GPM data is archived at https://pps.gsfc.nasa.gov/ ||
-
NASA/JAXA GPM Satellite Examines Hurricane Ida's Eye
Hurricane Ida off the Louisiana coast as a Category 4 hurricane on the morning of Sunday, August 29th at 10:13am (CDT) right before making landfall. This animation varies from the previous (#4932) by flying down to the left side of the storm and only peeling back the layers of volumetric DPR data up to the eye. The camera then flies up to get a straight down bird's eye view of the structure. Doing so allows us to see the multiple bands that extend outside of the inner eye wall. || Hurricane Ida struck southeast Louisiana as a powerful Category 4 storm on Sunday, Aug. 29, 2021- the 16th anniversary of Hurricane Katrina’s landfall in 2005. Ida brought destructive storm surge, high winds, and heavy rainfall to the region, and left over 1 million homes and businesses without power, including the entire city of New Orleans.The NASA / JAXA GPM Core Observatory satellite flew over the eye of Ida shortly before landfall at 10:13 a.m. CDT (1513 UTC), capturing data on the structure and intensity of precipitation within the storm. This animation shows NASA's IMERG multi-satellite precipitation estimates and NOAA GOES-E satellite cloud data, followed by 3D data from the GPM Core satellite. NASA processed these observations in near real-time and made them available to a wide range of users including weather agencies and researchers.After Ida passed over Cuba as a Category 1 storm, it intensified rapidly to reach Category 4 strength near its Louisiana landfall. According to the National Hurricane Center (NHC), Ida's central pressure reached a minimum of 929 hPa with a 15 nautical mile (17 statute mile) wide eye. At the time, Ida had its lifetime-maximum wind speed of 130 kt (150 mph) in the eyewall shortly before 10 a.m. CDT on Aug. 29.The 3D Dual-frequency Precipitation Radar (DPR) data collected by the GPM Core satellite shows a healthy hurricane inner core in Ida. The small 17-mile-diameter eyewall is surrounded by a nearly complete outer ring of precipitation approximately 85 miles in diameter. Beyond this central structure, an arc of precipitation exists another 40 miles further from the eye to the southeast. The eye hosts many clouds extending well above 6 miles (10 km), which indicates that Ida was still actively growing at the time of this overpass. NASA continues to monitor Ida as it moves north over the southeastern U.S., providing Earth-observing satellite data, maps and analysis to stakeholders to aid response and recovery efforts.Get the latest updates on Hurricane Ida from the National Hurricane Center (NHC).Learn more about how NASA monitors hurricanes. GPM data is archived at https://pps.gsfc.nasa.gov/ ||
-
NASA/JAXA GPM Satellite Eyes Hurricane Ida Shortly Before Landfall
Hurricane Ida off the Louisiana coast as a Category 4 hurricane on the morning of Sunday, August 29th at 10:13am (CDT) right before making landfall. || Hurricane Ida struck southeast Louisiana as a powerful Category 4 storm on Sunday, Aug. 29, 2021- the 16th anniversary of Hurricane Katrina’s landfall in 2005. Ida brought destructive storm surge, high winds, and heavy rainfall to the region, and left over 1 million homes and businesses without power, including the entire city of New Orleans.The NASA / JAXA GPM Core Observatory satellite flew over the eye of Ida shortly before landfall at 10:13 a.m. CDT (1513 UTC), capturing data on the structure and intensity of precipitation within the storm. This animation shows NASA's IMERG multi-satellite precipitation estimates and NOAA GOES-E satellite cloud data, followed by 3D data from the GPM Core satellite. NASA processed these observations in near real-time and made them available to a wide range of users including weather agencies and researchers.After Ida passed over Cuba as a Category 1 storm, it intensified rapidly to reach Category 4 strength near its Louisiana landfall. According to the National Hurricane Center (NHC), Ida's central pressure reached a minimum of 929 hPa with a 15 nautical mile (17 statute mile) wide eye. At the time, Ida had its lifetime-maximum wind speed of 130 kt (150 mph) in the eyewall shortly before 10 a.m. CDT on Aug. 29.The 3D Dual-frequency Precipitation Radar (DPR) data collected by the GPM Core satellite shows a healthy hurricane inner core in Ida. The small 17-mile-diameter eyewall is surrounded by a nearly complete outer ring of precipitation approximately 85 miles in diameter. Beyond this central structure, an arc of precipitation exists another 40 miles further from the eye to the southeast. The eye hosts many clouds extending well above 6 miles (10 km), which indicates that Ida was still actively growing at the time of this overpass. NASA continues to monitor Ida as it moves north over the southeastern U.S., providing Earth-observing satellite data, maps and analysis to stakeholders to aid response and recovery efforts.Get the latest updates on Hurricane Ida from the National Hurricane Center (NHC).Learn more about how NASA monitors hurricanes. GPM data is archived at https://pps.gsfc.nasa.gov/ ||
-
NASA/JAXA GPM Satellite Sees Tropical Storm Fred Make Florida Landfall
This data visualization shows Tropical Storm Fred as it makes landfall on August 16 along the Florida panhandle and then follows it inland on August 17 as it soaked the Alabama Georgia border. || Tropical Storm Fred, the 6th named storm of the 2021 Atlantic hurricane season, began as a westward moving disturbance in the central Atlantic east of the Lesser Antilles. The system passed through the southern Leeward Islands during the early morning hours of August 10 but still lacked a well-defined center of circulation. Despite significant thunderstorm activity within the system, it wasn’t until late that evening, when the system was passing just south of Puerto Rico, that the National Hurricane Center (NHC) identified a well-defined circulation and upgraded the system to Tropical Storm Fred. Despite the warm waters in the Caribbean, Fred’s nearly constant interaction with land and wind shear over the next few days limited any development. After Fred’s initial landfall as a tropical storm along the south coast of the Dominican Republic on the afternoon of August 11th, the storm tracked directly across the mountainous terrain of Hispaniola and weakened to a tropical depression. The center re-emerged over water on the 12th, but a combination of westerly and southwesterly wind shear and a track close to the north coast of Cuba kept Fred from redeveloping. Then, after encountering more shear while moving across western Cuba on the 13th, Fred further weakened before finally emerging into the southeast Gulf of Mexico as an open wave on the 14th. It takes time for a disorganized tropical system to re-strengthen, and the 14th saw increasing thunderstorm activity and slow re-organization. However, by the morning of August 15th, NHC found that the system had once again become a tropical storm. Now located in the east-central Gulf approximately due west of Fort Myers, Florida, Fred was in the process of recurving to the north due to an upper-level trough of low pressure to the northwest and a ridge of high pressure to the south and east.Fred slowly intensified on August 15 as it moved northeastward through the eastern Gulf of Mexico in the direction of the Florida panhandle with maximum sustained winds increasing to 50 mph by late in the evening. By 7:30 am CDT on the morning of the 16th, NHC reported that Fred’s maximum sustained winds had increased to 60 mph, making it a strong tropical storm. Fred was now just 80 miles south of Apalachicola, Florida and moving north. Several hours later at 18:41 UTC (1:41 pm CDT), just before the storm center made landfall, the NASA / JAXA GPM Core Observatory satellite flew over Fred, capturing 3D data on the structure and intensity of precipitation within the storm. The above animation shows a detailed look into Fred from GPM. Rainfall rates derived from the GPM Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR) show heavy rainbands (in red and orange) wrapping up around the eastern, northern and western sides of the storm. This pattern, coupled with the intense rain rates (shown in magenta) and tall towers (shown in the blue shading) just west of the center, suggests that Fred was poised for further strengthening. Fred made landfall shortly after the time of the GPM overpass at 19:15 UTC (2:15 pm CDT) near Cape San Blas, Florida with sustained winds of 65 mph. Precipitation data derived from the Integrated Multi-satellitE Retrievals for GPM (IMERG) show half-hourly rainfall estimates for the surrounding region leading up to the GPM overpass. After making landfall, Fred tracked northward across the Florida panhandle and into far southeastern Alabama. At this time, the GPM Core Observatory overflew Fred once again. This next animation shows Fred later that evening at 04:41 UTC 17 August (11:41 pm CDT 16 August) preceded again by IMERG rainfall estimates. Once over land, tropical storms and hurricanes usually weaken steadily and GPM shows that Fred’s circulation has begun to diminish with the bulk of the rain now occurring on the eastern side of the center, which is located over far southeastern Alabama near the Georgia border. Banding is still evident, and Fred was still a tropical storm, but its sustained winds were now reported at 40 mph by NHC. After this, Fred continued to track generally northward across northern Georgia and up along the western side of the Appalachians, bringing plenty of tropical moisture with it. Fred has brought widespread amounts of generally 2 to 4 inches of rain along its path with locally higher amounts upwards of 8 inches. This has led to flooding in parts of the Appalachians, especially in western North Carolina where multiple roads and bridges were reported to be washed out. Fred is also being blamed for several tornadoes across the Southeast and one indirect fatality in Florida.GPM data is archived at https://pps.gsfc.nasa.gov/ ||
-
NASA/JAXA GPM Satellite Watches Tropical Storm Nepartak During the Olympics
Tropical Storm Nepartak was seen off the coast of Japan on July 27, 2021 while the Olympics were being held in nearby Tokyo. || The Global Precipitation Measurement (GPM) Core Observatory satellite flew over Tropical Storm Nepartak at 9:30Z on July 27, 2021 while the Olympics were being held in nearby Tokyo. GPM observed the storm’s rainfall with its two unique science instruments: the GPM Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR). Although the 2021 Tokyo Summer Olympics did receive some inclement weather from the outer bands, the majority of the storm stayed out to sea providing strong waves for the inaugural Olympic surfing competitions.GPM data is archived at https://pps.gsfc.nasa.gov/ ||
2020 Hurricanes & Typhoons
2019 Hurricanes & Typhoons
-
GPM observes Hurricane Dorian lashing Florida
Snapshot view of 3D precipitation from DPR and surface rain rates (mm/hr) from GMI at 10:41 UTC (6:41 am EDT) 4 September 2019 when the center of Dorian was near the coast of central Florida about 90 miles due east of Daytona Beach.This video is also available on our YouTube channel. || GPM captured Dorian at 10:41 UTC (6:41 am EDT) on the 4th of September when the storm was moving north-northwest parallel to the coast of Florida about 90 miles due east of Daytona Beach. Three days earlier, Dorian had struck the northern Bahamas as one of the most powerful Category 5 hurricanes on record in the Atlantic with sustained winds of 185 mph. Weakening steering currents allowed the powerful storm to ravage the northern Bahamas for 2 full days. During this time, Dorian began to weaken due to its interactions with the islands as well as the upwelling of cooler ocean waters from having remained in the same location for so long. Immediately apparent is Dorian’s well-defined but very large eye. This feature is often seen in the later stages of powerful tropical cyclones, which includes hurricanes and typhoons. As these mature, powerful storms age, their wind field tends to expand. They often undergo what is known as eye wall replacement cycles wherein a 2nd concentric eye wall forms outside of the original inner eye wall. The inner eye wall is choked off and weakens leaving the outer eye wall as the dominant eye wall. The outer eye wall can still contract, but often the storm is left with a larger eye as is the case with Dorian. At the time of this image, Dorian’s maximum sustained winds were still 105 mph, making it a Category 2 storm, but a very large Category 2 storm.GPM data is archived at https://pps.gsfc.nasa.gov/ ||
-
GPM observes Hurricane Dorian over the Bahamas
Hurricane Dorian on September 1, 2019 (21:22 UTC) over Abaco Island in The BahamasThis video is also available on our YouTube channel. || The Global Precipitation Measurement (GPM) Core Observatory captured these images of Hurricane Dorian on September 1st (21:22 UTC) as the storm was directly over Abaco Island in The Bahamas. At that time, the storm was a category 5 hurricane with maximum sustained winds of 185 mph (295 km/h) with gusts over 200 mph. || Print resolution image of Hurricane Dorian on September 1, 2019 (21:22 UTC) over Abaco Island in The Bahamas ||
2018 Hurricanes & Typhoons
-
GPM Satellite observes powerful super Typhoon Yutu hitting Northern Marianas
GPM passed over Super Typhoon Yutu on October 24th at 11:07 a.m. EDT . As the camera moves in on the storm, DPR's volumetric view of the storm is revealed. A slicing plane moves across the volume to display precipitation rates throughout the storm. Shades of green to red represent liquid precipitation. Frozen precipitation is shown in cyan and purple.This video is also available on our YouTube channel. || NASA's GPM Core observatory satellite captured an image of Super Typhoon Yutu when it flew over the powerful storm just as the center was striking the central Northern Mariana Islands north of Guam.Early Thursday, Oct. 25 local time, Super Typhoon Yutu crossed over the U.S. commonwealth of the Northern Mariana Islands. It was the equivalent of a Category 5 hurricane. The National Weather Service in Guam said it was the strongest storm to hit any part of the U.S. this year.The Global Precipitation Measurement mission or GPM core satellite, which is managed by both NASA and the Japan Aerospace Exploration Agency, JAXA analyzed Yutu on Oct. 24 at 11:07 a.m. EDT (1507 UTC)/ 1:07 a.m. Guam Time, Oct. 25. GPM estimated rain rates within Super Typhoon Yutu fusing data from two instruments aboard: the GPM Dual-frequency Precipitation Radar or DPR, which covered the inner part of the storm, and the GPM Microwave Imager or GMI that analyzed the outer swath, just as the center was passing over the Island of Tinian.GPM shows the inner eyewall as a near perfect ring of heavy to intense rain. Peak rain rates of up to 269 mm/hr. (~10.6 inches/hr.) were estimated within the DPR swath. The almost perfect symmetry of the inner wall is indicative of an extremely powerful storm. In fact, at the time this image was taken, Yutu's maximum sustained winds were estimated at 155 knots (~178 mph) by the Joint Typhoon Warning Center, making it the strongest typhoon on record to strike Saipan and Tinian.GPM data is part of the toolbox of satellite data used by forecasters and scientists to understand how storms behave. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. Current and future data sets are available with free registration to users from NASA Goddard's Precipitation Processing Center website. ||
-
Tropical Storm Michael Drenches the Carolinas
This data visualization shows Tropical Storm Michael over the Carolinas on October 11, 2018. Shades of green, yellow, and red are ground precipitation rates. Blue and purple indicate frozen precipitation. || Hurricane Michael was the strongest storm on record to hit the Florida panhandle. It became a tropical depression on October 7th, intesifying into a hurricane by October 8th. It made landfall on October 10th. GPM caught the storm after it had weakened back down to a Tropical Storm on October 11th. But even in a weakened state, Michael still caused flash floods and power outages throughout the Carolinas. ||
-
GPM Captures Super Typhoon Mangkhut Approaching The Philippines
At nearly the same time that the US East Coast was experiencing the arrival of Hurricane Florence, a much more powerful storm was also arriving half a world away in the Philippines—Super Typhoon Mangkhut. While the slow-moving Florence arrived as a Category 1 hurricane that brought record flooding to the Carolinas, less than 7 hours later Mangkhut (known as Ompong in the Philippines) made landfall on the northern main island of Luzon as a full on Category 5 super typhoon with sustained winds reported at 165 mph. The visualization starts with a view of Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation rates from 15:11 UTC (11:11 pm PST) 12 September to 15:41 UTC (11:41 pm PST) 13 September 2018 as the storm was making its way across the Philippine Sea headed for Luzon. Before entering the Philippine Sea, Mangkhut passed just north of Guam on the evening of the 10th as a Category 2 typhoon with sustained winds reported at 105 mph by the Joint Typhoon Warning Center (JTWC) causing widespread power outages. The next day on the 11th as it entered the eastern Philippine Sea, Mangkhut underwent a rapid intensification cycle wherein the storm’s intensity shot from Category 2 on the afternoon of the 10th (local time) to Category 5 with sustained winds estimated at 160 mph by JTWC by the evening of the 11th (local time). Mangkhut is estimated to have reached its peak intensity at 18:00 UTC on the 12th (2:00 am PST 13 September) with maximum sustained winds estimated at 180 mph by JTWC, making it the strongest tropical cyclone of the year thus far.At the start of the visualization, Mangkhut was an extremely powerful Category 5 super typhoon and just approaching its peak intensity. Over the next 24 hours, Mangkhut’s intensity leveled out such that when the GPM core satellite over flew the storm, Mangkhut’s peak intensity was estimated at 165 mph, a still very powerful Category 5 storm. The end of the visualization shows the surface rainfall within Mangkhut as well as a 3D flyby of the storm courtesy of the GPM core satellite, which passed over the storm at around 15:40 UTC (11:40 pm PST) on the 13th. At the surface, a distinct eye is present surrounded by a large area of very heavy to intense rain (shown in dark red and magenta). Further out, heavy rain bands are rotating counter clockwise around the storm’s center. The flyby shows a 3D rendering of the radar structure of Mangkhut using data collected from GPM’s Dual-frequency Precipitation Radar or DPR. At the heart of the storm surrounding the eye is a ring of elevated echo tops associated with Mangkhut’s eyewall. The strong symmetry and continuity of the ring is consistent with an intense tropical cyclone and suggests no inhibiting effects such as dry air or wind shear are affecting the storm. In fact, after these images were taken, Mangkhut would continue on to strike the northern part of Luzon at the same estimated intensity, becoming the strongest typhoon to hit the Philippines since Super Typhoon Haiyan in 2013. So far the storm is being blamed for at least 95 fatalities in the Philippines, many due to a large landslide around the town of Itogon. After crossing Luzon, Mangkhut continued on to strike Hong Kong with winds reported at 121 mph before dissipating over mainland China, where it is being blamed for 6 fatalities. GPM data is part of the toolbox of satellite data used by forecasters and scientists to understand how storms behave. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. Current and future data sets are available with free registration to users from NASA Goddard's Precipitation Processing Center website. ||
-
GOES and GPM Capture Florence Trying to Intensify Over the Atlantic
Hurricane Florence originally formed from an African Easterly wave that emerged off the west coast of Africa back on the 30th of August. When it reached the vicinity of the Cape Verde Islands the next day, it was organized enough to become a tropical depression. The following day the depression strengthened enough to become a tropical storm and Florence was born on the 1st of September. Over the next 3 days, Florence gradually strengthened as it moved in a general west-northwest direction into the central Atlantic. Then, on the 4th of September, Florence began to rapidly intensify. By the morning of the 5th, Florence was a Category 3 hurricane before reaching Category 4 intensity later that afternoon with maximum sustained winds estimated at 130 mph by the National Hurricane Center (NHC). At this point, Florence became the victim of increasingly strong southwesterly wind shear, which greatly weakened the storm all the way back down to a tropical storm the by evening of the 6th.The following GOES-East Infrared (IR) loop shows Florence from 17:54 UTC (1:54 pm EDT) 6 September to 19:27 UTC (3:27 pm EDT) 7 September when it was struggling against the strong southwesterly wind shear in the Central Atlantic. A very interesting looking feature is the arc-shaped cloud that propagates outward from the storm towards the west. This cloud feature is occurring at upper-levels and is likely tied to a gravity wave propagating outward from an area of intense convection that erupted from deep within the storm. When the tops of these smaller scale storms within a storm reach the upper troposphere, they can trigger gravity waves. As these waves progagate outward they can enhance cloud formation where they induce rising motion and erode cloud where they induce downward motion or subsidence. As this arc-shaped cloud is able to propagate outward uniformly from the center, it must be occurring above the shear layer. Compensating areas of subsidence can also surround the strong rising motion occurring within the tall convective clouds. This can help to erode surrounding clouds and may be contributing to the clearing that occurs between the arc-shaped cloud and the mainarea of convection.The end of the loop shows surface rainfall and a 3D flyby of Florence courtesy of the GPM core satellite, which passed over the storm at around 19:21 UTC (3:21 pm EDT) on the 7th. At the surface, two areas of intense rain (shown in magenta) reveal the presence of two areas of strong thunderstorms within Florence north and northeast of the center. The flyby shows a 3D rendering of the radar structure of the storm. The darker blue tower indicates an area of deep convection that has penetrated well over 10 km high and is associated with the southernmost area of intense rain just north of the center. It is these areas of deep convection that fuel the storm by releasing heat, known as latent heat, mainly from condensation, near the core. Although it would be nearly 2 days before Florence re-gained hurricane intensity, these convective towers are what helped Florence to survive the effects of the wind shear and eventually grow back into a Category 4 hurricane.GPM is a joint mission between NASA and the Japanese space agency JAXA.Caption by Stephen Lang (SSAI/NASA GSFC) and Joe Munchak (GSFC). ||
-
GPM passes directly over Tropical Storm John off the coast of Mexico
GPM passed over Tropical Storm John on August 6, 2018. As the camera moves in on the storm, DPR's volumetric view of the storm is revealed. A slicing plane moves across the volume to display precipitation rates throughout the storm. Shades of green to red represent liquid precipitation extending down to the ground. Frozen precipitation is displayed in cyan and purple. This video is also available on our YouTube channel. || NASA's Global Precipitation Measurement mission or GPM core observatory satellite flew over Tropical Storm John on August 6, 2018. GPM showed that the large tropical cyclone was becoming well organized and had intense rainfall within feeder bands that were spiraling toward John's center. GPM's radar (DPR Ku Band) revealed that a band of powerful storms northeast of John's center were dropping rain at a rate of close to 160 mm (6.3 inches) per hour. The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions.GPM data is part of the toolbox of satellite data used by forecasters and scientists to understand how storms behave. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. Current and future data sets are available with free registration to users from NASA Goddard's Precipitation Processing Center website. ||
-
NASA Catches Super Typhoon Yutu Making Landfall
Music: "CSI," Anthony Edward Phillips, Atmosphere Music, Ltd.Complete transcript available. || NASA's GPM Core Observatory satellite captured an image of Super Typhoon Yutu when it flew over the powerful storm just as the center was striking the central Northern Mariana Islands north of Guam.Early Thursday, Oct. 25 local time, Super Typhoon Yutu crossed over the U.S. Commonwealth of the Northern Mariana Islands. It was the equivalent of a Category 5 hurricane. The National Weather Service in Guam said it was the strongest storm to hit any part of the U.S. this year.The Global Precipitation Measurement mission or GPM core satellite, which is managed by both NASA and the Japan Aerospace Exploration Agency, JAXA analyzed Yutu on Oct. 24 at 11:07 a.m. EDT (1507 UTC)/ 1:07 a.m. Guam Time, Oct. 25. GPM estimated rain rates within Super Typhoon Yutu fusing data from two instruments aboard: the GPM Dual-frequency Precipitation Radar or DPR, which covered the inner part of the storm, and the GPM Microwave Imager or GMI that analyzed the outer swath, just as the center was passing over the Island of Tinian. ||
2017 Hurricanes & Typhoons
-
Inside Hurricane Maria in 360°
Tour Hurricane Maria in a whole new way! Late on September 17, 2017 (10:08 p.m. EDT) Category 1 Hurricane Maria was strengthening in the Atlantic Ocean when the Global Precipitation Measurement (GPM) mission's Core Observatory flew over it. The Dual Frequency Precipitation Radar, measuring in a narrow band over the storm center, shows 3-D estimates of rain, with snow at higher altitudes. The tall "hot towers" characteristic of deepening hurricanes are actually topped by snow! Surface rainfall rates estimated by the GPM Microwave Imager paint the surface over a wider swath. During the tour, you'll see the radar-observed rain intensities displayed three different ways in various parts of the storm. Then, for the first time you'll see estimates of the precipitation particle sizes, which the GPM DPR is uniquely capable of showing, and which provide important insights into storm processes.GPM is a joint mission between NASA and the Japanese space agency JAXA. ||
-
GPM Catches Hurricane Nate's Landfall...Twice
NASA's GPM satellite helped track Nate's progress through the Gulf of Mexico and also captured Nate's landfall on the north central Gulf Coast. This animation shows instantaneous rainrate estimates from NASA's Integrated Multi-satellitE Retrievals for GPM or IMERG product over North America and the surrounding waters beginning on Thursday October 5th when Nate first became a tropical storm near the northeast coast of Nicaragua in the western Caribbean until its eventual landfall on the northern Gulf Coast on Sunday October 8th. IMERG estimates precipitation from a combination of space-borne passive microwave sensors, including the GMI microwave sensor onboard the GPM core satellite, and geostationary IR (infrared) data. The animation shows Nate moving rapidly northward through the Gulf of Mexico on the 7th. Nate's rapid movement from 20 to as much as 26 mph did not allow the storm much time to strengthen despite being over very warm waters and in a relatively low wind shear environment. Nate reached a peak intensity of 90 mph sustained winds, which it maintained while passing over the Gulf of Mexico, but it did not intensify any further before making landfall. The animation also shows two 3D flyby's of Nate captured by the GPM core satellite as it overflew the storm just before landfall at 22:58 UTC (5:58 CDT) on Saturday October 7th and again at 08:42 UTC (3:42 CDT) on Sunday October 8th soon after Nate's second landfall. The 3D precipitation tops (shown in blue) are from GPM's DPR as are the vertical cross sections of precipitation intensity. The first overpass shows that Nate is a very asymmetric storm with most of the rainbands associated with Nate located north and east of the center. With it's rapid movement, Nate was unable to fully develop and lacks the classic ring of intense thunderstorms associated a fully developed eyewall. Although overall much the same, the second overpass shows an area of deep, intense convection producing heavy rains over southwest Alabama. ||
-
Hurricane Tracks from 2017 with Precipitation and Cloud Data
2017 Atlantic Hurricane season storm tracks with IMERG precipitation and GOES clouds (01 Aug 2017 to 31 Oct 2017) || These visualizations show the tracks of Atlantic hurricanes during 2017. Data from the Global Precipitation Mission called IMERG is used to show rainfall and data from NOAA's GOES East shows clouds. Storm position and wind speed data from UNISYS are used to show the track lines. The numbers 1 through 5 as well as "T" are displayed when storms change categories. The "T" stands for tropical storm.There are 2 visualizations at various resolutions:- a wide Atlantic view that shows all of the hurricane tracks- a view that follows and zooms in only on Hurricane HarveyThese visualizaitons were created to support NASA talks given at the National Air and Space Musuem (NASM) in October 2017. The wide Atlantic view was updated at the end of hurricane season to include all Atlantic hurricanes in 2017 for display at the American Geophysical Union (AGU) conference.These visualizations only go through October 2017 because there were no Atlantic hurricanes in November or December 2017. ||
-
Hurricane Jose lingers in the Atlantic as Hurricane Maria approaches Puerto Rico
GPM passed over both Hurricane Maria and Hurricane Jose on September 18th, 2017. As the camera moves in on the Maria, DPR's volumetric view of the storm is revealed. A slicing plane moves across the volume to display precipitation rates throughout the storm. Shades of green to red represent liquid precipitation extending down to the ground. || The Global Precipitation Measurement (GPM) mission shows the rainfall distribution for two major storms churning in the Atlantic and Caribbean basins. The visualization shows Hurricane Jose as it continues to slowly move northward off the US East Coast east of the Outer Banks of North Carolina. At one time, Jose was a powerful category 4 border line category 5 storm with maximum sustained winds reported at 155 mph by the National Hurricane Center back on the 9th of September as it was approaching the northern Leeward Islands. Jose passed northeast of the Leeward Islands as a category 4 storm on a northwest track and then began to weaken due to the effects of northerly wind shear. Remaining over warm water allowed Jose to strengthen back into a hurricane on September 15th as wind shear across the storm diminished. At this time, Jose was still only midway between the central Bahamas and Bermuda, having just completed its loop, and moving to the northwest. On the 16th, Jose turned northward as it moved around the western edge of a ridge of high pressure near Bermuda and began to parallel the US East Coast well away from shore. An overpass by the GPM Core Observatory captured an image of Jose overnight at 3:36 UTC 18 September (11:36 pm EST 17 September) as the storm was moving due north at 9 mph well off shore from the coast of North Carolina. The GPM image estimated areas of very heavy rain on the order of 75 mm/hr (~3 inches per hour). The GPM Core Observatory satellite also had an excellent view of Hurricane Maria when it passed almost directly above the hurricane on September 17, 2017 at 1001 PM AST (September 18, 2017 0201 UTC). GPM's Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) showed that Maria had well defined bands of precipitation rotating around the eye of the tropical cyclone. GPM's radar (DPR Ku band) found rain falling at a rate of over 6.44 inches (163.7 mm) per hour in one of these extremely powerful storms northeast of Maria's eye. Intense thunderstorms were found towering to above 9.7 miles (15.7 km). This kind of chimney cloud is also called a "hot tower" (as it releases a huge quantity of latent heat by condensation). These tall thunderstorms in the eye wall are often a sign that a tropical cyclone is becoming more powerful. Maria rapidly intensified following this view to a Category 5 storm on September 19th. ||
-
GPM Examines Hurricane Irma
GPM scans Hurricane Irma on September 5th and again on September 7th as the storm approaches Puerto Rico, the Dominican Republic, and Haiti as a category 5 hurricane. This video is also available on our YouTube channel. || The GPM core observatory satellite had an exceptional view of hurricane Irma's eye when it flew above it on September 5, 2017 at 12:52 PM AST (1652 UTC). This visualization shows a rainfall analysis that was derived from GPM's Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) data. Irma was approaching the Leeward Islands with maximum sustained winds of about 178 mph (155 kts). This made Irma a dangerous category five hurricane on the Saffir-Simpson hurricane wind scale. Intense rainfall is shown within Irma's nearly circular eye. This 3-D cross-section through Irma's eye was constructed using GPM's radar (DPR Ku band) data. GPM's radar revealed that the heavy precipitation rotating around the eye was reaching altitudes greater than 7.75 miles (12.5 km). The tallest thunderstorms were found by GPM's radar in a feeder band that was located to the southwest of Irma's eye. These extreme storms were reaching heights of over 10.0 miles (16.2 km). Intense downpours in the eye wall were found to be returning radar reflectivity values of over 80dBZ to the GPM satellite.Irma rapidly intensified on September 4-5 as it moved over very warm waters and into an environment will weak vertical wind shear (the change of winds with height). Irma maintained maximum winds of 185 mph for a day and a half, making it one of the longest-lived storms at this intensity. That intensity made it the strongest observed storm over the Atlantic Ocean (excluding the Gulf of Mexico and Caribbean). Irma’s rapid intensification was very similar to Hurricane Harvey's in the Gulf about 10 days earlier. ||
-
Link
Hurricane Harvey
The Global Precipitation Mission (GPM) Core Observatory captured these images of Hurricane Harvey at 11:45 UTC and 21:25 UTC on the 27th of August nearly two days after the storm made landfall as it was meandering slowly southeast at just 2 mph (~4 kph) near Victoria, Texas west of Houston. The image shows rain rates derived from GPM's GMI microwave imager (outer swath) and dual-frequency precipitation radar or DPR (inner swath) overlaid on enhanced infrared data from the GOES-East satellite. Harvey's cyclonic circulation is still quite evident in the infrared clouds, but GPM shows that the rainfall pattern is highly asymmetric with the bulk of the rain located north or east of the center. A broad area of moderate rain can be seen stretching from near Galveston Bay to north of Houston and back well to the west. Within this are embedded areas of heavy rain (red areas); the peak estimated rain rate from GPM during these overpasses was 96 mm/hr (~3.77 inches per hour). With Harvey's circulation still reaching out over the Gulf, the storm is able to draw in a continuous supply of warm moist air to sustain the large amount of rain it is producing.
-
NASA Captures Hurricane Harvey's Rainfall
Music: "Whirlpool," Michael Jan Levine, Killer Tracks || The Global Precipitation Measurement (GPM) Core Observatory captured these images of Hurricane Harvey at 11:45 UTC and 21:25 UTC on the 27th of August nearly two days after the storm made landfall as it was meandering slowly southeast at just 2 mph (~4 kph) near Victoria, Texas west of Houston. The image shows rain rates derived from GPM's GMI microwave imager (outer swath) and dual-frequency precipitation radar or DPR (inner swath) overlaid on enhanced visible/infrared data from the GOES-East satellite. Harvey's cyclonic circulation is still quite evident in the visible/infrared clouds, but GPM shows that the rainfall pattern is highly asymmetric with the bulk of the rain located north and east of the center. A broad area of moderate rain can be seen stretching from near Galveston Bay to north of Houston and back well to the west. Within this are embedded areas of heavy rain (red areas); the peak estimated rain rate from GPM at the time of this overpass was 96 mm/hr (~3.77 inches per hour). With Harvey's circulation still reaching out over the Gulf, the storm is able to draw in a continuous supply of warm moist air to sustain the large amount of rain it is producing. ||
-
NASA Catches Hurricanes Jose and Maria
Music: "Tradition-Innovation," Philippe Lhommet, KOKA Media || The Global Precipitation Measurement (GPM) mission shows the rainfall distribution for two major storms churning in the Atlantic and Caribbean basins. The visualization shows Hurricane Jose as it continues to slowly move northward off the US East Coast east of the Outer Banks of North Carolina. At one time, Jose was a powerful Category 4 border line Category 5 storm with maximum sustained winds reported at 155 mph by the National Hurricane Center back on the 9th of September as it was approaching the northern Leeward Islands. Jose passed northeast of the Leeward Islands as a Category 4 storm on a northwest track and then began to weaken due to the effects of northerly wind shear. Remaining over warm water allowed Jose to strengthen back into a hurricane on September 15th as wind shear across the storm diminished. At this time, Jose was still only midway between the central Bahamas and Bermuda, having just completed its loop, and moving to the northwest. On the 16th, Jose turned northward as it moved around the western edge of a ridge of high pressure near Bermuda and began to parallel the US East Coast well away from shore. An overpass by the GPM Core Observatory captured an image of Jose overnight at 3:36 UTC 18 September (11:36 pm EST 17 September) as the storm was moving due north at 9 mph well off shore from the coast of North Carolina. The GPM image estimated areas of very heavy rain on the order of 75 mm/hr (~3 inches per hour).The GPM Core Observatory satellite also had an excellent view of Hurricane Maria when it passed almost directly above the hurricane on September 17, 2017 at 1001 PM AST (September 18, 2017 0201 UTC). GPM's Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) showed that Maria had well defined bands of precipitation rotating around the eye of the tropical cyclone. GPM's radar (DPR Ku band) found rain falling at a rate of over 6.44 inches (163.7 mm) per hour in one of these extremely powerful storms northeast of Maria's eye. Intense thunderstorms were found towering to above 9.7 miles (15.7 km). This kind of chimney cloud is also called a "hot tower" (as it releases a huge quantity of latent heat by condensation). These tall thunderstorms in the eye wall are often a sign that a tropical cyclone is becoming more powerful. Maria rapidly intensified following this view to a Category 5 storm on September 19th. ||
-
Intense String of Hurricanes Seen From Space
In 2017, we have seen four Atlantic storms rapidly intensify with three of those storms - Hurricane Harvey, Irma and Maria - making landfall. When hurricanes intensify a large amount in a short period, scientists call this process rapid intensification. This is the hardest aspect of a storm to forecast and it can be most critical to people’s lives.While any hurricane can threaten lives and cause damage with storm surges, floods, and extreme winds, a rapidly intensifying hurricane can greatly increase these risks while giving populations limited time to prepare and evacuate. ||
2016 Hurricanes & Typhoons
2015 Hurricanes & Typhoons
-
Joaquin
Animation of Tropical Storm Joaquin on September 29, 2015 right before it intensified into a hurricane. The camera moves in on the storm, and the visualization concludes with a 360 degree view around the storm. This video is also available on our YouTube channel. || Joaquin became a tropical storm on the evening (EDT) of Monday, September 28th midway between the Bahamas and Bermuda and has now formed into a hurricane, the 3rd of the season--the difference is Joaquin could impact the US East Coast. GPM captured Joaquin Tuesday, September 29th at 21:39 UTC (5:39 pm EDT) as the hurricane moved slowly towards the west-southwest about 400 miles east of the Bahamas. At the time, Joaquin had been battling northerly wind shear, which was impeding the storm's ability to strengthen. However, compared to earlier in the day, the system was beginning to gain the upper hand as the shear began to relax its grip. At the time of this data visualization, Joaquin's low-level center of circulation was located further within the cloud shield, and the rain area was beginning to wrap farther around the center on the eastern side of the storm while showing signs of increased banding and curvature, a sure sign that Joaquin's circulation was intensifying. GPM shows a large area of very intense rain with rain rates ranging from around 50 to 132 mm/hr (~2 to 5 inches, shown in shades of red) just to the right of the center. This is a strong indication that large amounts of heat are being released into the storm's center, fueling its circulation and providing the means for its intensification. Associated with the area of intense rain is an area of tall convective towers, known as a convective burst, with tops reaching up to 16.3 km. These towers when located near the storm's core are a strong indication that the storm is poised to strengthen as they too reveal the release of heat into the storm.At the time this data was taken, the National Hurricane Center reported that Joaquin's maximum sustained winds had increased to 65 mph from 40 mph earlier in the day, making Joaquin a strong tropical storm but poised to become a hurricane, which did occur on September 30th at 8:00 am EDT. ||
-
Tracking Kilo from Hurricane to Typhoon
Global visualization of Hurricane Kilo as it formed in the Eastern Pacific and moved across the international dateline finally diminishing in the Western Pacific near Japan. As Kilo progresses, GPM captures swathes of surface precipitation data throughout the storm's life cycle. || The Global Precipitation Measurement (GPM) mission's core satellite captured Hurricane Kilo throughout its life cycle as Kilo slowly worked it's way westward across the Pacific Ocean. Kilo eventually crossed the international dateline where it officially changed from a "hurricane" to a "typhoon". Along it's way, Kilo put itself in the record books. Kilo was the 3rd named storm of the 2015 hurricane season to cross the international dateline. It was also a very long lasting storm persisting for 21 days, which made it a fairly rare event. Because it was such a long lasting storm, GPM was able to capture it several times throughout the course of it's life span. Such multiple captures of the same storm can help scientists better understand the development of hurricanes. ||
-
Tropical Storm Fred
Animation of Tropical Storm Fred via GPM on August 30, 2015 at 0236 UTC. || The Global Precipitation Measurement (GPM) mission core satellite passed over Tropical Storm Fred as it was developing in the Eastern Atlantic early August 30th and saw "hot towers" in the storm, which hinted that the storm was intensifying.Fred became the first Cape Verde hurricane of the 2015 Atlantic season when it was upgraded from a tropical storm on August 31, 2015 at 0600 UTC (2 a.m. EDT). The GPM core observatory satellite flew over on August 30, 2015 at 0236 UTC when Fred was forming from a tropical wave that moved off the African coast. Rainfall was measured by GPM's Dual-Frequency Precipitation Radar (DPR) at the extreme rate of close to 128 mm (5.0 inches) per hour. Rainfall in towering convective storms at Fred's center of circulation were providing the energy necessary for intensification into a hurricane. Three dimensional reflectivity data from GPM's DPR showed that these "hot towers" had storm top heights reaching to 16.2 km (10.0 miles).A "hot tower" is a tall cumulonimbus cloud that reaches at least to the top of the troposphere, the lowest layer of the atmosphere. It extends approximately 9 miles/14.5 km high in the tropics. These towers are called "hot" because they rise to such altitude due to the large amount of latent heat. Water vapor releases this latent heat as it condenses into liquid. Those towering thunderstorms have the potential for heavy rain. NASA research shows that a tropical cyclone with a hot tower in its eyewall was twice as likely to intensify within six or more hours, than a cyclone that lacked a hot tower. ||
-
Tropical Storm Bill Over Texas
Visualization of rainfall over Texas as Tropical Storm Bill further drenched the state with rain on June 17, 2015 at 6:11:27Z. Shades of blue indicate frozen precipitation in the atmosphere and shades of green to red show liquid precipitation. || Tropical Storm Bill made landfall over Texas at approximately 11:45am CST on June 16, 2015. Shortly after midnight, GPM passed over the storm as it slowly worked it's way northward across the already drenched state of Texas. This visualization shows Bill at precisely 12:11:27am CST (6:11:27 GMT) on June 17, 2015.The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs. The Dual-frequency Precipitation Radar provides the three-dimensional view, showing the structure of the storm spiraling inward toward the center, with heavier rain on the north side of the storm. Shades of blue represent ice in the upper part of clouds. Viewed from the side, the stark color change from blue to green marks the transition from ice to rain.For forecasters, GPM's microwave and radar data are part of the toolbox of satellite data, including other low Earth orbit and geostationary satellites, that they use to monitor tropical cyclones and hurricanes. The addition of GPM data to the current suite of satellite data is timely. Its predecessor precipitation satellite, the Tropical Rainfall Measuring Mission, after 18 years of operation was deorbited June 16 (the same day Tropical Storm Bill made landfall). GPM's new high-resolution microwave imager data and the unique radar data ensure that forecasters and modelers won't have a gap in coverage. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. All GPM data products can be found at NASA Goddard's Precipitation Processing Center. ||
-
GPM Examines Super Typhoon Maysak
Visualization depicting Typhoon Maysak in the Southwest Pacific region as observed by the Global Precipitation Measurement (GPM) Core Satellite on March 30th, 2015. GPM/GMI precipitation rates are displayed as the camera moves in on the storm. A slicing plane moves across the volume to display precipitation rates throughout the structure of the storm. Shades of green to red represent liquid precipitation extending down to the ground. This video is also available on our YouTube channel. || The Global Precipitation Measurement (GPM) Core Satellite captured a 3-D image of Typhoon Maysak on March 30th as the storm approached the Yap Islands. The storm later intensified to a category 5-equivalent super typhoon with 150-mph sustained winds. The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in three dimensions.GPM data is part of the toolbox of satellite data used by forecasters and scientists to understand how storms behave. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. Current and future data sets are available with free registration to users from NASA Goddard's Precipitation Processing Center website. ||
-
GPM Gets a Ton of Kilo
A narrated visualization of Hurricane/Typhoon Kilo.For complete transcript, click here. || The Global Precipitation Measurement (GPM) mission core satellite provided many views of Tropical Cyclone Kilo over its very long life. GPM is a satellite co-managed by NASA and the Japan Aerospace Exploration Agency that has the ability to analyze rainfall and cloud heights. GPM was able to provide data on Kilo over its 21 day life-span. The GPM core observatory satellite flew over Kilo on August 25, 2015 at 0121 UTC as it approached Johnston Atoll and found that rainfall intensity had recently increased and the tropical depression's storm tops were very tall. GPM's Dual-Frequency Precipitation Radar (DPR) discovered that rain was falling at a rate of almost 65 mm (2.6 inches) per hour and storm tops were measured at altitudes of over 15.4 km (9.5 miles)Kilo was born in the Central Pacific Ocean on August 21, became a hurricane, crossed the International Dateline and was re-classified as a Typhoon and finally became extra-tropical on September 11 off Hokkaido, Japan, the northernmost of Japan’s main islands. ||
-
GPM 2015: One Year of Storms
A look back at the storms captured by GPM for 2015. || A look back at the storms captured by GPM around the world during 2015. The storms that appear in order are as follows:1. New England Nor’easter – January 26 – New England, USA 2. Snowstorm – February 17 – Kentucky, Virginia and North Carolina, USA3. Tornadic Thunderstorms in Midwest – March 25 – Oklahoma and Arkansas, USA4. Typhoon Maysak – March 30 – Yap Islands, Southwest Pacific Ocean5. Rain Accumulation from Cyclone Quang – April 28 through May 3 - Australia6. Flooding in Central Texas and Oklahoma – May 19 through May 26 - USA7. Hurricane Blanca – June 1 – Eastern Pacific Ocean, Baja Peninsula, Mexico8. Tropical Storm Ashobaa – June 8 – Arabian Sea9. Tropical Storm Carlos – June 12 – Southwestern Coast, Mexico10. Tropical Storm Bill – June 16 – Texas, USA11. USA Rain Accumulation – June through July - USA12. Tropical Storm Raquel – July 1 – Solomon Islands, South Pacific Ocean13. Tropical Storm Claudette – July 13 – North Atlantic Ocean14. Typhoon Nangka – July 15 - Japan15. Hurricane Delores Remnants Rainfall – July 13 through 20 – Southwestern USA16. Typhoon Halola – July 21 - Japan17. Typhoon Soudelor – August 5 – Taiwan and China18. Hurricane/Typhoon Kilo – August 23 through September 9 – Hawaii and Pacific Ocean19. Tropical Storm Erika – August 26 – Caribbean Sea20. Tropical Storm Fred – August 30 – Cape Verde21. Tropical Depression Nine – September 16 – Central Atlantic Ocean22. Tropical Storm Ida – September 21 – Central Atlantic Ocean23. Tropical Storm Niala – September 25 – Hawaii and Pacific Ocean24. Tropical Storm Marty – September 27 – Southwestern Coast, Mexico25. Typhoon Dujuan – September 22 through September 29 – Taiwan and China26. Hurricane Joaquin – September 29 – Caribbean Sea27. Typhoon Koppu – October 15 - Philippines28. Hurricane Patricia – October 22 – Texas, USA29. Tropical Cyclone Chapala – October 28 through November 3 – Yemen and Arabian Sea30. Tropical Cyclone Megh – November 8 – Yemen and Arabian Sea31. Typhoon IN-FA – November 19 – Western Pacific Ocean32. Hurricane Sandra – November 26 – Eastern Pacific Ocean33. India Flooding – November 28 through December 4 – Tamil Nadu, India34. Winter Storm Desmond – November 30 through December 7 – United Kingdom35. Tropical Cyclone 05S – December 9 – Reunion and Mauritius, South Indian Ocean36. Super Typhoon Melor – December 12 - Philippines37. Tornadoes and Flooding in Midwest – December 21 through December 28 – Midwestern USA38. Paraguay Flooding – December 22 through December 29 – Asuncion, Paraguay39. Tropical Depression 95P – December 29 – Pacific Ocean40. Tropical Cyclone 06P (ULA) – December 30 – Samoa, South Pacific Ocean41. Near Real-Time IMERG – December 25 through December 31 ||
2014 Hurricanes & Typhoons
-
GPM Dissects Typhoon Hagupit
Animation revealing a swath of GPM/GMI precipitation rates over Typhoon Hagupit. As the camera moves in on the storm, DPR's volumetric view of the storm is revealed. A slicing plane moves across the volume to display precipitation rates throughout the storm. Shades of green to red represent liquid precipitation extending down to the ground.This video is also available on our YouTube channel. || On December 5, 2014 (1032 UTC) the Global Precipitation Measurement (GPM) mission's Core Observatory flew over Typhoon Hagupit as it headed towards the Philippines. A few hours later at 1500 UTC (10 a.m. EST), Super Typhoon Hagupit's maximum sustained winds were near 130 knots (149.6 mph/241 kph), down from 150 knots (172 mph/277.8 kph). Typhoon-force winds extend out 40 nautical miles (46 miles/74 km) from the center, while tropical-storm-force winds extend out to 120 miles (138 miles/222 km).The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions.For forecasters, GPM's microwave and radar data are part of the toolbox of satellite data, including other low Earth orbit and geostationary satellites, that they use to monitor tropical cyclones and hurricanes. The addition of GPM data to the current suite of satellite data is timely. Its predecessor precipitation satellite, the Tropical Rainfall Measuring Mission, is 18 years into what was originally a three-year mission. GPM's new high-resolution microwave imager data and the unique radar data ensure that forecasters and modelers won't have a gap in coverage. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. All GPM data products can be found at NASA Goddard's Precipitation Processing Center website http://pps.gsfc.nasa.gov/. ||
-
GPM Scans Typhoon Phanfone
Animation revealing a swath of GPM/GMI precipitation rates over Typhoon Phanfone. The camera then moves down closer to the storm to reveal DPR's volumetric view of Phanphone. A slicing plane dissects the Typhoon from south to north and back again, revealing it's inner precipitation rates. Shades of blue indicate frozen precipitation (in the upper atmosphere). Shades of green to red are liquid precipitation which extend down to the ground. || On October 6, 2014 (0215 UTC) the Global Precipitation Measurement (GPM) mission's Core Observatory flew over Typhoon Phanfone as it made landfall over Tokyo, Japan. At this point, Typhoon Phanfone is category 3 with maximum sustained winds at 127 miles per hour (mph) and gusts reaching 155 mph. Phanfone caused landslides and flooding throughout Japan.The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions.For forecasters, GPM's microwave and radar data are part of the toolbox of satellite data, including other low Earth orbit and geostationary satellites, that they use to monitor tropical cyclones and hurricanes. The addition of GPM data to the current suite of satellite data is timely. Its predecessor precipitation satellite, the Tropical Rainfall Measuring Mission, is 18 years into what was originally a three-year mission. GPM's new high-resolution microwave imager data and the unique radar data ensure that forecasters and modelers won't have a gap in coverage. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. All GPM data products can be found at NASA Goddard's Precipitation Processing Center website. ||
-
GPM Explores Typhoon Vongfong
Animation revealing a swath of GPM/GMI precipitation rates over Typhoon Vongfong. As the camera moves in on the storm, DPR's volumetric view of the storm is revealed. A slicing plane moves across the volume to display precipitation rates throughout the storm. Shades of green to red represent liquid precipitation extending down to the ground. This video is also available on our YouTube channel. || On October 9, 2014 (0248UTC) the Global Precipitation Measurement (GPM) mission's Core Observatory flew over Typhoon Vongfong as it headed towards Japan. At this point, the storm had weakened to a category 4 typhoon with maximum sustained winds at 150 miles per hour (mph), down form a category 5 typhoon on October 8th. The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions.For forecasters, GPM's microwave and radar data are part of the toolbox of satellite data, including other low Earth orbit and geostationary satellites, that they use to monitor tropical cyclones and hurricanes. The addition of GPM data to the current suite of satellite data is timely. Its predecessor precipitation satellite, the Tropical Rainfall Measuring Mission, is 18 years into what was originally a three-year mission. GPM's new high-resolution microwave imager data and the unique radar data ensure that forecasters and modelers won't have a gap in coverage. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. All GPM data products can be found at NASA Goddard's Precipitation Processing Center website http://pps.gsfc.nasa.gov/. ||
-
GPM captures Hurricane Odile
On September 15, 2014 (15:11 UTC) the Global Precipitation Measurement (GPM) mission's Core Observatory flew over Hurricane Odile as it made landfall on the Baja peninsula. At this point, Hurricane Odile is category 2 with maximum sustained winds at 98 miles per hour (mph) and gusts reaching 121 mph. Odile caused major damage to several Mexican beach resorts including Cabo San Lucas, and has the potential to cause flash flooding as far as Phoenix, Arizona.The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions.For forecasters, GPM's microwave and radar data are part of the toolbox of satellite data, including other low Earth orbit and geostationary satellites, that they use to monitor tropical cyclones and hurricanes. The addition of GPM data to the current suite of satellite data is timely. Its predecessor precipitation satellite, the Tropical Rainfall Measuring Mission, is 18 years into what was originally a three-year mission. GPM's new high-resolution microwave imager data and the unique radar data ensure that forecasters and modelers won't have a gap in coverage. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. All GPM data products can be found at NASA Goddard's Precipitation Processing Center website. ||
-
GPM Dissects Hurricane Arthur
The Global Precipitation Measurement mission's Core Observatory flew over Hurricane Arthur five times between July 1 and July 6, 2014. Arthur is the first tropical cyclone of the 2014 Atlantic Hurricane season. It formed as a tropical storm on Tuesday, July 1 and reached maximum intensity as a Category 2 hurricane on July 4, disrupting some coastal U.S. Independence Day celebrations. This visualization is taken from the flyover on July 3, 2014 with Hurricane Arthur just off the South Carolina coast. GPM data showed that the hurricane was asymmetrical, with spiral arms, called rain bands, on the eastern side of the storm but not on the western side.The GPM Core Observatory carries two instruments that show the location and intensity of the rain, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions.For forecasters, GPM's microwave and radar data are part of the toolbox of satellite data, including other low Earth orbit and geostationary satellites, that they use to monitor tropical cyclones and hurricanes. The addition of GPM data to the current suite of satellite data is timely. Its predecessor precipitation satellite, the Tropical Rainfall Measuring Mission, is 18 years into what was originally a three-year mission. GPM's new high-resolution microwave imager data and the unique radar data ensure that forecasters and modelers won't have a gap in coverage. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. The satellite launched Feb. 27, and after its check-out period began its prime mission on May 29, in time for hurricane season.All GPM data products will be released to the public by September 2, 2104. Current and future data sets are available to registered users from NASA Goddard's Precipitation Processing Center website. ||
Snow
Other Extreme Weather
-
IMERG Catches Australian "Rain Bomb"
Music: "Swim Against the Tide," Universal Production Music || The following animation shows surface rainfall estimates from NASA’s IMERG multi-satellite precipitation product for the week starting on February 22, 2022 at 0000 UTC and ending on February 28, 2022 at 2330 UTC. Areas shaded in blue and yellow show three-hour average snapshots of IMERG rain rates every half-hour overlaid on cloudiness (shown in white/gray) based on geosynchronous satellite infrared observations. Below the rain rates and cloudiness data, IMERG rainfall accumulations are shown in green and purple. Tropical Cyclone Anika’s track is shown with a gray line based on data from the U.S. Navy-Air Force Joint Typhoon Warning Center (JTWC). IMERG shows Anika’s clockwise circulation and some of the rainbands responsible for bringing rainfall further inland as well as Anika’s relatively slow forward speed along the coast that resulted in estimated rainfall totals of over 250 mm (~10 inches) over parts of the northwest coast of Australia. On the southeast coast, IMERG shows the persistence of the heavy rains around Brisbane that resulted in estimated rain totals in excess of 500 mm (~20 inches) with locally higher amounts reported by individual stations. ||
-
GPM sees Louisiana Floods
This visualization begins with an overview of the United States showing the clouds and rainfall accumulation of the massive rain event over Louisiana beginning on August 11th, 2016 through August 13th, 2016. The camera then begins to zoom in as time resets to August 11th. Time then slows way down on August 12th to show the first of GPM's passes. In this close up of GPM's volumetric DPR data over Louisiana, a cutting plane materializes into view to show the inner structure of this giant storm system. From this view, one can clearly see the heavy amounts of rain in the center of the storm (depicted in yellow, orange, and red). The GPM data then dissolves away as time speeds up before slowing down again later on that same day. This time GPM captures a much larger swath of the storm. Dissolving in the cutting plane again reveals huge amounts of rainfall at this later time. As the GPM data dissolves away again, time speeds back up to show the rest of the rainfall accumulation partway through August 13. At this time, a large portion of Louisiana can be seen completely saturated with rainfall accumulations (depicted in shades of orange to red). ||
-
India Monsoon - July 2014
Animation of a monsoon over the western coast of India on July 28th, 2014. As the camera moves in, a cutting plane reveals the inner structures of the storm. || GPM scanned this storm structure over the western coast of India on July 28th, 2014 at 03:58 UTC. The most intense sections of the storm with the heaviest rainfall are shown in dark red. Three days later, on July 31st, a deadly landslide occurred in the same region. Scientists are currently studying heavy precipitation events such as this one in order to better predict landslides in the future. The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions. ||
-
GPM Provides a Closer Look at the Louisiana Floods
Music: Chris White, "Afterglow"Complete transcript available. || Twice on August 12, 2016 GPM flew over a massive rainstorm that flooded large portions of Louisiana. The flooding was some of the worst ever in the state, resulting in a state of emergency. Tens of thousands of people were evacuated from their homes in the wake of this unprecedented event.Throughout the course of August 12 (UTC) GPM captured the internal structure of the storm twice and GPM IMERG measured the rainfall accumulation on the ground.NASA's GPM satellite is designed to measure rainfall using both passive microwave (GMI) and radar (DPR) instruments. DPR can observe 3D structures of radar signals reflected by rain and snow in a narrower swath.IMERG is a NASA data product that combines data from 12 different satellites into a single seamless map. IMERG covers more of the globe than any previous precipitation data set and is updated every half hour. ||
-
Monsoons: Wet, Dry, Repeat...
Complete transcript available.Music: Letting Go by Mario Lauer, 24 Dimensions by Christian Telford, David Travis Edwards, Matthew St. Laurent, and Robert Anthony Navarro || The monsoon is a seasonal rain and wind pattern that occurs over South Asia (among other places). Through NASA satellites and models we can see the monsoon patterns like never before. Monsoon rains provide important reservoirs of water that sustain human activities like agriculture and supports the natural environment through replenishment of aquifers. However, too much rainfall routinely causes disasters in the region, including flooding of the major rivers and landslides in areas of steep topography.This visualization uses a combination of NASA satellite data and models to show how and why the monsoon develops over this region. In the summer the land gets hotter, heating the atmosphere and pulling in cooler, moisture-laden air from the oceans. This causes pulses in heavy rainfall throughout the region. In the winter the land cools off and winds move towards the warmer ocean and suppressing rainfall on land. ||
-
Life of the Monsoon
Additional footage: pond5.comMusic: Ruminations by Miriam Cutler, 24 Dimensions by Christian Telford, David Travis Edwards, Matthew St. Laurent, and Robert Anthony NavarroComplete transcript available.Watch this video on the NASA Goddard YouTube channel. || The monsoon is a seasonal rain and wind pattern that occurs over South Asia (among other places). Through NASA satellites and models we can see the monsoon patterns like never before. Monsoon rains provide important reservoirs of water that sustain human activities like agriculture and supports the natural environment through replenishment of aquifers. However, too much rainfall routinely causes disasters in the region, including flooding of the major rivers and landslides in areas of steep topography.This is a web video version of the full visualization (featured below). ||
-
North American Monsoon
Music: "Mesmerized Housewives," Donn WIlkersonComplete transcript available. || North America experiences a yearly monsoon weather system in late summer as moisture comes up from the west coast of Mexico and enters the southwestern U.S. The seasonal weather pattern brings both much of the region's precipitation but can also pose a threat in the form of flash flooding. The Global Precipitation Measurement (GPM) mission gathers data from these storms in order to better understand the precipitation processes happening within, which can help better forecast the breaks and surges in the monsoon. ||
-
Tracking California Rains During El Niño
This winter, areas across the globe experienced a shift in rain patterns due to the natural weather phenomenon known as El Niño. New NASA visualizations of rainfall data show the various changes to California.According to the National Oceanic and Atmospheric Administration, El Niño was expected to produce wetter-than-average conditions from December 2015 to February 2016. Scientists refer to historical weather patterns and to look at trends of where precipitation normally occurs during El Niño events. Also, several factors—not just El Niño—can contribute to unusual weather pattern. ||
IMERG Visualizations
The satellites in the Global Precipitation Measurement Constellation provide unprecedented information about the rain and snow across the entire Earth. These visualizations show the constellation in action, taking precipitation measurements underneath the satellite orbits. As time progresses and the Earth's surface is covered with measurements, the structure of the Earth's preciptation becomes clearer, from the constant rainfall patterns along the Equator to the storm fronts in the mid-latitudes.
GPM Applications
Videos focusing on the application of GPM data around the world.
-
NASA Satellites Help Farmers in Central America's Dry Corridor
Music: "Beautiful Serenity," Samuel Karl Bohn & Anthony Phillips, Universal Production Music.Complete transcript available. || Unexpected shocks from natural hazards can affect populations throughout the globe, threatening sustainable development and resilience. However, the impacts of these events, such as extreme precipitation or drought, disproportionately affect the developing world where individuals often are not insured and live and work in conditions that leave them vulnerable to natural disasters. This can lead to significant economic and environmental challenges if preventive measures or mitigating measures are not taken in time. To reduce risks from natural disasters and build climate resilience, decision makers are using NASA Earth observations to develop index-based insurance products and protect low-income customers in Central America, especially in the region known as the Dry Corridor. ||
-
Guiding Farmers with NASA Satellites
Agriculture in Pakistan is dependent on irrigation from the Indus River, but over the years, these freshwater resources have become scarce. Today, it is one of the world’s most depleted basins. To tackle this, farmers are attempting to predict and track freshwater resources with the help of NASA satellites and cell phones. || Complete transcript available.Music credits: “Billy” by Rob Jager [BUMA]; “Perfect Space” by Anthony Edwin Phillips [PRS], Samuel Karl Bohn [PRS]; “Games Show Spheres 07” by Anselm Kreuzer [GEMA]; “Hope Will Save Us” by Christopher John Hutchings [PRS] Additional imagery credit: University of Washington Watch this video on the NASA Goddard YouTube channel. ||
-
NASA Rainfall Data and Global Fire Weather
Additional footage courtesy of Greenpeace.Music: "Vulnerable Moment," John Ashton Thomas, Atmosphere Music Ltd.; "Inducing Waves," Ben Niblett and Jon Cotton, Atmosphere Music Ltd.Complete transcript available. || The Global Fire WEather Database (GFWED) integrates different weather factors influencing the likelihood of a vegetation fire starting and spreading. It is based on the Fire Weather Index (FWI) System, which tracks the dryness of three general fuel classes, and the potential behavior of a fire if it were to start. Each day, FWI values are calculated from global weather data, including satellite rainfall data from the Global Precipitation Measurement (GPM) mission. The FWI System is the most widely used fire danger rating system in the world, and has been adopted for different boreal, temperate and tropical fire environments. GFWED provides a globally consistent fire weather dataset for fire researchers and managers to apply locally.The Fire Weather Index component is suitable as a general index of fire danger. Globally, shifts in continental-scale fire activity follow seasonal changes in the FWI. Over South America and Africa, regions of high FWI and active agricultural burning shift with the tropical rain belts, seen in the GPM precipitation overlay. Over North America and Eurasia, the FWI will ‘activate’ in the spring, and shows how week-to-week surges in fire activity can be driven by high FWI values. More information on GFWED and instructions on accessing the data are available from https://data.giss.nasa.gov/impacts/gfwed/ ||
-
Using Precipitation Data to Assess Risk of Cholera Outbreaks
Music: "A New Hope," Al Lethbridge, Atmosphere Music Ltd PRS; "Spirals within a Sphere," Adam Salkeld, Atmosphere Music Ltd PRSComplete transcript available. || Diarrheal diseases such as cholera continue to be a public health threat. Prediction of an outbreak of diarrheal disease, specifically cholera, following a natural disaster remains a challenge, especially in regions lacking basic safe civil infrastructure [water, sanitation and hygiene (WASH)]. The underlying mechanism of a cholera outbreak is associated with disruption in the human access to safe WASH infrastructure that results in the population using unsafe water containing pathogenic vibrios. Presence and abundance of Vibrio cholerae, the causative agent of cholera, are related to modalities of the environment and regional weather as well as the climate systems. Major cholera outbreaks occur in two dominant forms: (a) epidemic, characterized by a sudden and sporadic occurrence of a large number of cholera cases and (b) endemic, in which human cholera cases occur on annual scales with distinct and characteristic seasonality. Natural disasters characteristically leave a trail of destruction, the result of which may be a human population deprived of access to WASH infrastructure. For example, under normal circumstances, the likelihood of a cholera outbreak is low, since the human population adapts to its specific behavioral pattern of water use. However, following a natural disaster, human behavior will change, if the availability, use pattern, and storage capacity of drinking water are altered as a result of the WASH infrastructure having been severely damaged and/or rendered unusable. Forecasting a cholera risk is challenging because of the lack of data on pathogen abundance in local water systems, weather and climate patterns and existing WASH infrastructure. Vibrios, including V. cholerae are autochthonous to the natural aquatic ecosystem, hence eradication is not feasible.A new modeling approach using satellite data will likely to enhance our ability to develop cholera risk maps in several regions of the globe. The model (GCRM) is based on monthly air temperature, precipitation, availability of WASH infrastructure, population density and severity of natural disaster. The outputs of GCRM can be visualized on 0.10x0.10, with the hope of improving the spatial scale as new data products are incorporated into the model. ||
-
Link
New NASA Model Finds Landslide Threats in Near Real-Time During Heavy Rains
A new model has been developed to look at how potential landslide activity is changing around the world. A global Landslide Hazard Assessment model for Situational Awareness (LHASA) has been developed to provide an indication of where and when landslides may be likely around the world every 30 minutes. This model uses surface susceptibility (including slope, vegetation, road networks, geology, and forest cover loss) and satellite rainfall data from the Global Precipitation Measurement (GPM) mission to provide moderate to high “nowcasts.” This visualization shows the landslide nowcast results leveraging nearly two decades of Tropical Rainfall Measurement Mission (TRMM) rainfall over 2001-2016 to identify a landslide climatology by month at a 1 km grid cell. The average nowcast values by month highlight the key landslide hotspots, such as the Southeast Asia during the monsoon season in June through August and the U.S. Pacific Northwest in December and January.
Overlaid with these nowcasts values are a Global Landslide Catalog(GLC) that was developed with the goal of identifying rainfall-triggered landslide events around the world, regardless of size, impact, or location. The GLC considers all types of mass movements triggered by rainfall, which have been reported in the media, disaster databases, scientific reports, or other sources. The visualization shows the distribution of landslides each month based on the estimated number of fatalities the event caused. The GLC has been compiled since 2007 at NASA's Goddard Space Flight Center and contains over 11,000 reports and growing. A new project called the Community the Cooperative Open Online Landslide Repository, or COOLR, provides the opportunity for the community to view landslide reports and contribute their own. The goal of the COOLR project is to create the largest global public online landslide catalog available and open to for anyone everyone to share, download, and analyze landslide information. More information on this system is available at: https://landslides.nasa.gov.
Landslides occur when an environmental trigger like an extreme rain event, often a severe storm or hurricane, and gravity's downward pull sets soil and rock in motion. Conditions beneath the surface are often unstable already, so the heavy rains act as the last straw that causes mud, rocks, or debris- or all combined- to move rapidly down mountains and hillsides. Unfortunately, people and property are often swept up in these unexpected mass movements. Landslides can also be caused by earthquakes, surface freezing and thawing, ice melt, the collapse of groundwater reservoirs, volcanic eruptions, and erosion at the base of a slope from the flow of river or ocean water. But torrential rains most commonly activate landslides.
-
Predicting Malaria Outbreaks With NASA Satellites
In the Amazon Rainforest, few animals are as dangerous to humans as mosquitos that transmit malaria. The tropical disease can bring on severe fever, headaches and chills and is particularly severe for children and the elderly and can cause complications for pregnant women. In rainforest-covered Peru the number of malaria cases has spiked such that, in the past five years, it has had on average the second highest rate in the South American continent. In 2014 and 2015 there were 65,000 reported cases in the country.Containing malaria outbreaks is challenging because it is difficult to figure out where people are contracting the disease. As a result, resources such as insecticide-treated bed nets and indoor sprays are often deployed to areas where few people are getting infected, allowing the outbreak to grow.To tackle this problem, university researchers have turned to data from NASA’s fleet of Earth-observing satellites, which are able to track the types of human and environmental events that typically precede an outbreak. With funding from NASA’s Applied Sciences Program, they are working in partnership with the Peruvian government to develop a system that uses satellite and other data to help forecast outbreaks at the household level months in advance and prevent outbreaks.Additional imagery from: Christopher B. Plunkett FortJames GathanyFábio Medeiros da Costa ||
-
A New Multi-dimensional View of a Hurricane
Music: "Buoys," Donn Wilkerson, Killer Tracks; "Late Night Drive," Donn Wilkerson, Killer Tracks.Complete transcript available. || NASA researchers now can use a combination of satellite observations to re-create multi-dimensional pictures of hurricanes and other major storms in order to study complex atmospheric interactions. In this video, they applied those techniques to Hurricane Matthew. When it occurred in the fall of 2016, Matthew was the first Category 5 Atlantic hurricane in almost ten years. Its torrential rains and winds caused significant damage and loss of life as it coursed through the Caribbean and up along the southern U.S. coast. ||
-
Hurricane Forecasts Rely on Modeling the Past
Complete transcript available.Music: Chris White, Afterglow || Improving hurricane forecasts means testing historical storms with today's sophisticated models and supercomputers. NASA and NOAA work together in gathering ground and satellite observations, as well as experimenting with research forecast models. As a result of this collaboration, model resolution has increased, and scientists are discovering more about the processes that occur within these powerful storms. The Global Precipitation Measurement (GPM) Mission is a joint NASA and Japan Aerospace Exploration Agency (JAXA) mission that measures all forms of precipitation around the globe. GPM's Microwave Imager, or GMI, has proven useful in seeing beneath the swirling clouds and into the structure of tropical cyclones. The information gathered by GPM and other missions will be used to improve forecast models. ||
-
GPM Applications
Water is fundamental to life on Earth. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. Since rainfall and snowfall vary greatly from place to place and over time, satellites can provide more uniform observations of rain and snow around the globe than ground instruments, especially in areas where surface measurements are difficult. GPM's next-generation global precipitation data will lead to scientific advances and societal benefits in the following areas: Improved knowledge of the Earth's water cycle and its link to climate change New insights into precipitation microphysics, storm structures and large-scale atmospheric processes Better understanding of climate sensitivity and feedback processes Extended capabilities in monitoring and predicting hurricanes and other extreme weather events Improved forecasting capabilities for natural hazards, including floods, droughts and landslides. Enhanced numerical prediction skills for weather and climate Better agricultural crop forecasting and monitoring of freshwater resources.For more information and resources please visit the Precipitation Measurement Missions web site. ||
-
GPM Applications
Water is fundamental to life on Earth. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. Since rainfall and snowfall vary greatly from place to place and over time, satellites can provide more uniform observations of rain and snow around the globe than ground instruments, especially in areas where surface measurements are difficult. GPM's next-generation global precipitation data will lead to scientific advances and societal benefits in the following areas: Improved knowledge of the Earth's water cycle and its link to climate change New insights into precipitation microphysics, storm structures and large-scale atmospheric processes Better understanding of climate sensitivity and feedback processes Extended capabilities in monitoring and predicting hurricanes and other extreme weather events Improved forecasting capabilities for natural hazards, including floods, droughts and landslides. Enhanced numerical prediction skills for weather and climate Better agricultural crop forecasting and monitoring of freshwater resources.For more information and resources please visit the Precipitation Measurement Missions web site. ||
Video Features
Produced web shorts on science topics, engineering features, and team member profiles.
Live Broadcasts
Archives of live broadcast events.
-
NASA Science Live: Storms Across the Solar System (Episode 04)
NASA Science Live: Storms Across the Solar SystemProgram Aired May 22, 2019 || This episode of NASA Science Live talks about storms across the solar system. Starting with how storms form on Earth. Then, what conditions cause them to happen on other planets in a weather forecast from across the solar system. Finally, a look at how NASA studies storms on our own planet and with the release of a weather balloon. ||
-
Link
Hurricane Matthew Live
We’re talking about the science behind Hurricane Matthew using NASA satellite observations from space. NASA’s Global Precipitation Measurement Mission or GPM core satellite saw tremendous amounts of rainfall throughout Haiti. GPM has now captured Matthew near the Florida coast undergoing an eyewall replacement cycle, a process that may re-intensify the storm.
-
Link
Extreme Rainfall Live
Ever wonder where in the world we get the most extreme rainfall (and how we know)? Or if climate change is going to cause more frequent and intense hurricanes? Join NASA scientists for a live discussion of how we study extreme weather from space and to get a behind-the-scenes tour of the Global Precipitation Measurement Mission Operations Center.
Data Visualizations
Animated sequences based on actual data and/or simulations.
Animations
Conceptual and illustrative animations of GPM instruments and science concepts.
-
GPM Has Best Calibrated Microwave Imager in the World
This is an infographic describing how the GPM Microwave Imager works and maintains its high degree of calibration, as well as how it contributes to the precipitation rates produced by the mission. || With so many important applications, how does GPM create these maps and make sure they’re accurate? In a recent evaluation, GPM’s microwave imager was named the best calibrated microwave imager to date. So what exactly makes it the best? It’s a combination of better hardware and more advanced technology. ||
-
Link
Drop Size Distribution
Not all raindrops are created equal. The size of falling raindrops depends on several factors, including where the cloud producing the drops is located on the globe and where the drops originate in the cloud. For the first time, scientists have three-dimensional snapshots of raindrops and snowflakes around the world from space, thanks to the joint NASA and Japan Aerospace Exploration Agency Global Precipitation Measurement (GPM) mission. With the new global data on raindrop and snowflake sizes this mission provides, scientists can improve rainfall estimates from satellite data and in numerical weather forecast models, helping us better understand and prepare for extreme weather events.
Watch this video on the NASA Goddard YouTube Channel.
-
Landslide Animation
Landslide animation - rotational landslide. || Landslides are one of the most pervasive hazards in the world, resulting in more fatalities and economic damage than is generally recognized. They have caused more than 11,500 fatalities in 70 countries from 2007-2010, and in the United States alone $1-2 billion dollars per year in damage from destroyed houses and blocked roads, according to the United States Geological Survey. Saturating the soil on vulnerable slopes, intense and prolonged rainfall is the most frequent landslide trigger. But understanding the land and weather conditions that lead to landslides on larger scales or within developing countries is often difficult because of the lack of ground-based sensors at the landslide site to provide rainfall information. ||
-
GPM Core Spacecraft Beauty Passes
A variety of animated beauty passes of the Global Precipitation Measurement (GPM) Core spacecraft. || Various beauty passes of the GPM Core spacecraft. || The GPM Core satellite cruises over a hurricane. ||
-
GPM Launch and Deploy Animation
This version contains music and sound effects. || This version contains only sound effects. ||
-
GPM Instrument Animations
This conceptual animation shows the GPM Microwave Imager (GMI) and the Dual-frequency Precipitation Radar (DPR) scanning through a cloud detecting various precipitation particles. || Animations showing the GMI then DPR instruments on board the GPM Core Observatory. ||
People of GPM
OLYMPEX Field Campaign 2015-2016
The Olympic Mountain Experiment, or OLYMPEX, is a NASA-led field campaign, which will take place on the Olympic Peninsula of Washington State from November 2015 through February 2016. The goal of the campaign is to collect detailed atmospheric measurements that will be used to evaluate how well rain-observing satellites measure rainfall and snowfall from space. In particular, OLYMPEX will be assessing satellite measurements made by the Global Precipitation Measurement (GPM) mission Core Observatory.
-
OLYMPEX
Oct. 15th, 2015
(updated Jan. 20th, 2016)The Olympic Mountain Experiment, or OLYMPEX, is a NASA-led field campaign, which will take place on the Olympic Peninsula of Washington State from November 2015 through February 2016. The goal of the campaign is to collect detailed atmospheric measurements that will be used to evaluate how well rain-observing satellites measure rainfall and snowfall from space. In particular, OLYMPEX will be assessing satellite measurements made by the Global Precipitation Measurement (GPM) mission Core Observatory, a joint mission by NASA and the Japan Aerospace Exploration Agency (JAXA), which launched in 2014. For more information: http://pmm.nasa.gov/olympex
Launch Coverage
GPM launched at 1:37 PM EST on February 27, 2014, from Tanegashima Space Center, Japan.
-
GPM Launch Multimedia Package
A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen launching from th Tanegashima Space Center, 1:37 PM (EST) on Friday, Feb. 28, 2014, Tanegashima Space Center. The GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. || GPM Launch 2-27-14 || Recording of the live launch coverage featuring Aries Keck, Dalia Kirschbaum, Walt Petersen, and Tom Wagner. ||
-
Link
Live Launch Coverage
A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen launching from th Tanegashima Space Center, 1:37 PM (EST) on Friday, Feb. 28, 2014, Tanegashima Space Center. The GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours.
-
Link
Launch Video File
A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen launching from th Tanegashima Space Center, 1:37 PM (EST) on Friday, Feb. 28, 2014, Tanegashima Space Center. The GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours.
-
Link
Postlaunch Briefing from Japan
A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen launching from th Tanegashima Space Center, 1:37 PM (EST) on Friday, Feb. 28, 2014, Tanegashima Space Center. The GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours.
-
Global Precipitation Measurement (GPM) Live Shot broll
NASA scientists talk about the GPM mission ahead of launch. || Broll of launch support. || Interview of Michelle Thaller speaking about GPM.For complete transcript, click here. || Interview of Dalia Kirschbaum speaking about GPM.For complete transcript, click here. || Broll of animations used for Live Shot. ||
-
GPM Launch Coverage Promo
Join NASA as we count down the launch of the Global Precipitation Measurement (GPM) mission at 12:00 PM EST, Thursday, February 27, 2014. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA) and it will set a new standard in measuring rain and snow around the world. As we build up to the launch from Tanegashima Space Center in Japan, our NASA scientists will discuss the satellite's major innovations and the big questions GPM will set out to answer. Follow along on NASA Television (www.nasa.gov/ntv) and ask your big questions to the experts using #gpm on Twitter. GPM is scheduled to launch from Tanegashima Space Center at 1:07 PM EST on February 27, 2014. For more information, visit www.nasa.gov/GPM. ||
Countdown to Launch
Short videos highlighting major steps along the way from Goddard Space Flight Center, Md., to launch from Tanegashima Island, Japan.
-
Link
Waiting for Launch
GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space.
The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking.
-
Link
GPM's Last Stop Before Orbit
GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space.
The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking.
-
Link
Greetings from Minamitane!
GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space.
The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking.
-
Link
Fairing Encapsulation
GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space.
The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking.
-
GPM: Journey to Launch
An international satellite that will set a new standard for global precipitation measurements from space has completed a 7,300-mile journey from the United States to Japan, where it now will undergo launch preparations.A U.S. Air Force C-5 transport aircraft carrying the Global Precipitation Measurement (GPM) Core Observatory landed at Kitakyushu Airport, about 600 miles southwest of Tokyo, at approximately 10:30 p.m. EST Saturday, Nov. 23.The spacecraft, the size of a small private jet, is the largest satellite ever built at NASA’s Goddard Space Flight Center in Greenbelt, Md. It left Goddard inside a large shipping container Nov. 19 and began its journey across the Pacific Ocean Nov. 21 from Joint Base Andrews in Maryland, with a refueling stop in Anchorage, Alaska.From Kitakyushu Airport, the spacecraft was loaded onto a barge heading to the Japan Aerospace Exploration Agency's (JAXA's) Tanegashima Space Center on Tanegashima Island in southern Japan, where it will be prepared for launch in early 2014 on an H-IIA rocket. ||
-
GPM: Journey to Launch
An international satellite that will set a new standard for global precipitation measurements from space has completed a 7,300-mile journey from the United States to Japan, where it now will undergo launch preparations.A U.S. Air Force C-5 transport aircraft carrying the Global Precipitation Measurement (GPM) Core Observatory landed at Kitakyushu Airport, about 600 miles southwest of Tokyo, at approximately 10:30 p.m. EST Saturday, Nov. 23.The spacecraft, the size of a small private jet, is the largest satellite ever built at NASA’s Goddard Space Flight Center in Greenbelt, Md. It left Goddard inside a large shipping container Nov. 19 and began its journey across the Pacific Ocean Nov. 21 from Joint Base Andrews in Maryland, with a refueling stop in Anchorage, Alaska.From Kitakyushu Airport, the spacecraft was loaded onto a barge heading to the Japan Aerospace Exploration Agency's (JAXA's) Tanegashima Space Center on Tanegashima Island in southern Japan, where it will be prepared for launch in early 2014 on an H-IIA rocket. ||
Raw Media for Broadcast
HD broadcast-quality footage of the GPM Core spacecraft in various stages of integration and testing, as well as the shipping of the spacecraft to Japan in preparation for launch.
-
TRMM B-roll
This is footage of the Tropical Rainfall Measuring Mission (TRMM). || Launch of TRMM, November 27, 1997. || Footage of building TRMM. || More footage of building TRMM. ||
-
GPM Arrives in Japan Extended B-roll
Extended b-roll of GPM's arrival in Japan and journey to Tanegashima Space Center, Japan.Built at NASA's Goddard Space Flight Center in Greenbelt, Md., the GPM spacecraft travelled roughly 7,300 miles (11,750 kilometers) to its launch site at Tanegashima Space Center on Tanegashima Island, Japan, where it is scheduled for liftoff on Feb 27, 2014 1:07 pm (EST). GPM's Core Observatory is a joint mission between NASA and the Japan Aerospace Exploration Agency to study rainfall and snowfall around the globe, including weather and storms that the Core Observatory previewed on its trans-Pacific journey. ||
-
GPM Ships Out to Japan for Launch
An international satellite that will set a new standard for global precipitation measurements from space began its 7,300-mile journey from Maryland to Japan where it will undergo launch preparations. The Global Precipitation Measurement (GPM) mission is a partnership led by NASA and the Japan Aerospace Exploration Agency (JAXA). GPM’s Core Observatory satellite is designed to unify precipitation measurements made by a constellation of U.S. and international partner satellites to achieve global coverage of rain and snow every three hours. The spacecraft was carried by truck from its design and testing home at NASA's Goddard Space Flight Center in Greenbelt, Md., on Nov. 19th inside a large transportation container to Andrews Air Force Base, Md. The container was loaded onto an Air Force C-5 transport aircraft, which left Andrews early on Nov. 21 for a 15-hour flight to the Kitakyushu Airport in Japan. From the Kitakyushu Airport the spacecraft will be loaded onto a barge and shipped to JAXA’s Tanegashima Space Center on Tanegashima Island in southern Japan where it will be prepared for launch in early 2014 on a H-IIA rocket. The GPM Core Observatory satellite, which is the size of a small business jet, is the largest Earth science satellite ever built at NASA Goddard.This is footage of the GPM Core spacecraft leaving Goddard Space Flight Center and traveling to Andrews Air Force Base for travel to Japan for launch. ||
-
GPM Video File
The Global Precipitation Measurement (GPM) mission is an international satellite mission that will set a new standard for precipitation measurements from space, providing the next-generation observations of rain and snow worldwide every three hours. GPM data will advance our understanding of the water and energy cycles and extend the use of precipitation data to directly benefit society. JAXA, the Japan Aerospace Exploration Agency, is NASA's main partner in GPM. GPM will launch in early 2014. ||
-
GPM Core Spacecraft Integration and Testing
A selection of footage of the GPM Core Observatory building, testing, and integration. || Various shots of the GPM Core spacecraft in the cleanroom. || Solar array deployment test for the core observatory of the Global Precipitation Measurement (GPM) mission, June 2013. Test conducted at NASA Goddard Space Flight Center. || The fully intergrated Core spacecraft rotates on the Aronson table. || The GPM Core spacecraft readies for thermal vacuum testing in the Space Environmental Simulator (SES). ||
-
GPM: What We Don't Know About Snow
GPM Deputy Project Scientist Gail Skofronick-Jackson discusses GPM's snowfall measurement capabilities and the challenges of measuring snow. || Short video describing the challenges associated with measuring falling snow from space.For complete transcript, click here. || Clips of falling snow at night. || Clips of falling snow. ||
-
NASA Airborne Cold Weather Experiment Measures Falling Snow
NASA is flying an airborne science laboratory through Canadian snowstorms for six weeks in support of a difficult task of the upcoming Global Precipitation Measurement (GPM) mission: measuring snowfall from space. GPM is an international satellite mission scheduled for launch in 2014 that will provide next-generation observations of worldwide rain and snow every three hours. It is the first precipitation mission designed to detect falling snow from space. || Video file for GCPEx field campaign.For complete transcript, click here. ||
Prelaunch Press Briefings
Press briefings held on January 27, 2014, from Goddard Space Flight Center.
-
GPM L-30 Mission and Science Briefings
NASA held a series of media events Monday, Jan. 27, in advance of the February launch of the Global Precipitation Measurement (GPM) Core Observatory from Japan. The events were held at NASA’s Goddard Space Flight Center in Greenbelt, Md.GPM is an international satellite mission led by NASA and the Japan Aerospace Exploration Agency (JAXA) that will provide next-generation observations of rain and snow worldwide. GPM data also will contribute to climate research and the forecasting of extreme weather events such as floods and hurricanes.The GPM Core Observatory is scheduled to lift off Feb. 27, between 1:07 and 3:07 p.m. EST, from JAXA's Tanegashima Space Center in Japan.Media events include briefings on the GPM mission and science. Briefing panelists are: Steven Neeck, deputy associate director, flight program, Earth Science, NASA Headquarters, Washington Kinji Furukawa, GPM Dual-frequency Precipitation Radar deputy project manager, JAXA, Tsukuba Art Azarbarzin, GPM project manager, Goddard Ramesh Kakar, GPM program scientist, Headquarters Gail Skofronick-Jackson, GPM deputy project scientist, Goddard Riko Oki, GPM/DPR program scientist, JAXATo view on YouTube, click here for the Mission Briefing and the Science Briefing. ||
High Resolution Still Images
Large images of the GPM Core spacecraft over several building, testing and integration milestones.
-
GPM High-resolution Still Images
These are images documenting the building, integration and testing of the Global Precipitation Measurement (GPM) mission. The most recent developments are listed first.For additional images please visit the Precipitation Measurement Missions Image Gallery. || Vibration testing of the horizontal axis of the spacecraft.Credit: NASA || Vibration testing of the vertical axis of the spacecraft.Credit: NASA || The GPM Core Observatory completed the EMI/EMC test at Goddard Space Flight Center in May 2013.Credit: NASA ||
Educator Resources
These are elements that may be used as materials in presentations.
-
Assembling the GPM Paper Model
This is an instructional video for the GPM paper model. || Short step-by-step video for the GPM paper model. ||
-
GPM Presentation Resources
Media resources for educators and presentations. || Illustrative model of how a landslide occurs. || Comparison of the global coverage of the TRMM satellite versus the GPM constellation. || This animation shows the coverage of TRMM compared to GPM and then dissovles into the GPM Constellation Swath animation. || A simple illustrative comparison of the number of rain gauges active worldwide. Taking all of the rain gauges combined would equal about the surface area of two basketball courts. || Comparison of ground radar coverage with changing elevation. ||
-
Anatomy of a Raindrop
This short video explains how a raindrop falls through the atmosphere and why a more accurate look at raindrops can improve estimates of global precipitation.For a printable droplet hand out click here. || This short video explains how a raindrop falls through the atmosphere and why a more accurate look at raindrops can improve estimates of global precipitation.Complete transcripts are available in English and Brazilian Portuguese. || Updated raindrop animation || Animation of the raindrop shape only.For a printable droplet handout, click here. ||