Content Contact:
This animation will be regularly updated to show the orbits of the current earth observing fleet.
This most recent version, published in March 2014 includes the recently launched GPM satellite and removes Jason-1 which was decommissioned in 2013.
Previous versions from recent years include:
entry 4274 a February 2015 version including SMAP
entry 3996 a spring 2014 version including GPM
entry 4070 a May 2013 version which added Landsat-8
entry 3892 a Dec 2011 version which added Suomi NPP and Aquarius
entry 3725 a version from June 2010
Missions begin with a study phase during which the key science objectives of the mission are identified, and designs for spacecraft and instruments are analyzed. Following a successful study phase, missions enter a development phase whereby all aspects of the mission are developed and tested to insure it meets the mission objectives. Operating missions are those missions that are currently active and providing science data to researchers. Operating missions may be in their primary operational phase or in an extended operational phase.
Missions begin with a study phase during which the key science objectives of the mission are identified, and designs for spacecraft and instruments are analyzed. Following a successful study phase, missions enter a development phase whereby all aspects of the mission are developed and tested to insure it meets the mission objectives.
This visualization was produced using model output from the joint MIT/JPL project entitled Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2). ECCO2 uses the MIT general circulation model (MITgcm) to synthesize satellite and in-situ data of the global ocean and sea-ice at resolutions that begin to resolve ocean eddies and other narrow current systems, which transport heat and carbon in the oceans. The ECCO2 model simulates ocean flows at all depths, but only surface flows are used in this visualization.
New satellite technologies offer enhanced capabilities for early forecasting of food production at national, regional, and global scales. The Group on Earth Observations (GEO) Global Agricultural Monitoring (GEOGLAM) program aims to strengthen national capacity in all countries from freely available data.
These visuals show MODIS' satellite-derived crop NDVI Anomaly relative to average (2000-2011). Orange and brown indicate crop with below average conditions. Green indicates crop with above averate conditions. The visual compares the crop conditions or NDVI anomaly from year 2011-2012 to year 2012-2013. In the 2012-2013 year 7,342 more metric tons (MT) of wheat were produced then in the previous year, but 40,086 fewer metric tons of corn were produced.
As the visualization shows, carbon dioxide in the atmosphere can be mixed and transported by winds in the blink of an eye. For several decades, scientists have measured carbon dioxide at remote surface locations and occasionally from aircraft. The OCO-2 mission represents an important advance in the ability to observe atmospheric carbon dioxide. OCO-2 collects high-precision, total column measurements of carbon dioxide (from the sensor to Earth’s surface) during daylight conditions. While surface, aircraft, and satellite observations all provide valuable information about carbon dioxide, these measurements do not tell us the amount of carbon dioxide at specific heights throughout the atmosphere or how it is moving across countries and continents. Numerical modeling and data assimilation capabilities allow scientists to combine different types of measurements (e.g., carbon dioxide and wind measurements) from various sources (e.g., satellites, aircraft, and ground-based observation sites) to study how carbon dioxide behaves in the atmosphere and how mountains and weather patterns influence the flow of atmospheric carbon dioxide. Scientists can also use model results to understand and predict where carbon dioxide is being emitted and removed from the atmosphere and how much is from natural processes and human activities.
Carbon dioxide variations are largely controlled by fossil fuel emissions and seasonal fluxes of carbon between the atmosphere and land biosphere. For example, dark red and orange shades represent regions where carbon dioxide concentrations are enhanced by carbon sources. During Northern Hemisphere fall and winter, when trees and plants begin to lose their leaves and decay, carbon dioxide is released in the atmosphere, mixing with emissions from human sources. This, combined with fewer trees and plants removing carbon dioxide from the atmosphere, allows concentrations to climb all winter, reaching a peak by early spring. During Northern Hemisphere spring and summer months, plants absorb a substantial amount of carbon dioxide through photosynthesis, thus removing it from the atmosphere and change the color to blue (low carbon dioxide concentrations). This three-dimensional view also shows the impact of fires in South America and Africa, which occur with a regular seasonal cycle. Carbon dioxide from fires can be transported over large distances, but the path is strongly influenced by large mountain ranges like the Andes. Near the top of the atmosphere, the blue color indicates air that last touched the Earth more than a year before. In this part of the atmosphere, called the stratosphere, carbon dioxide concentrations are lower because they haven’t been influenced by recent increases in emissions.
As the animation plays forward through mid-April, the concentration of carbon dioxide, shown in orange-yellow, in the middle part of Earth's lowest atmospheric layer, the troposphere, increases and spreads throughout the northern hemisphere, reaching a maximum around May. This blooming effect of carbon dioxide follows the seasonal changes that occur in northern latitude ecosystems, in which deciduous trees lose their leaves, resulting in a net release of carbon dioxide through a process called respiration. Carbon dioxide is also released in early spring as soils begin to warm. Almost 10 percent of atmospheric carbon dioxide passes through soils each year.
After April, the northern hemisphere moves into late spring and summer and plants begin to grow, reaching a peak in the late summer. The process of plant photosynthesis removes carbon dioxide from the air. The animation shows how carbon dioxide is scrubbed out of the atmosphere by the large volume of new and growing vegetation. Following the peak in vegetation, the drawdown of atmospheric carbon dioxide due to photosynthesis becomes apparent, particularly over the boreal forests.
Note that there is roughly a three-month lag between the state of vegetation at Earth's surface and its effect on carbon dioxide in the middle troposphere.
Data like these give scientists a new opportunity to better understand the relationships between carbon dioxide in Earth's middle troposphere and the seasonal cycle of vegetation near the surface.
Creating the Animation
This animation was created with data taken from two NASA spaceborne instruments. The concentration of carbon dioxide data from the Atmospheric Infrared Sounder (AIRS), a weather and climate instrument that flies aboard NASA's Aqua spacecraft, is overlain on measurements of vegetation index from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, also on NASA's Aqua spacecraft, to better understand how photosynthesis and respiration influences the atmospheric carbon dioxide cycle over the globe. The animation runs from January through December and repeats. The AIRS tropospheric carbon dioxide seasonal cycle values were made by averaging AIRS data collected between 2003 and 2010, from which the annual carbon dioxide growth trend of 2 parts per million per year has been removed. For example, the data used for January 1 is actually an average of eight years of AIRS carbon dioxide data taken each year on January 1. The vegetation values were made using data averaged over a four-year period, from 2003 to 2006.
Further Detail
AIRS uses infrared technology to determine the concentration of atmospheric water vapor and several important trace gases as well as information about temperature and clouds. AIRS orbits Earth from pole-to-pole at an altitude of 438 miles (705 kilometers), measuring Earth's infrared spectrum in 3,278 channels spanning a wavelength range from 3.74 microns to 15.4 microns. Originally designed to improve weather forecasts, AIRS has improved operational five-day weather forecasts more than any other single instrument over the past decade. AIRS has also been found to be sensitive to atmospheric carbon dioxide in the middle troposphere, at an altitude of 5 to 10 kilometers or 3 to 6 miles. AIRS is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena. For further information, access the AIRS project
The MODIS instrument is managed by NASA's Goddard Space Flight Center, Greenbelt, Md. For further information, access the MODIS project.
Scientists examined observations made from 2005 to 2014 by the Ozone Monitoring Instrument aboard NASA's Aura satellite. One of the atmospheric gases the instrument detects is nitrogen dioxide, a yellow-brown gas that is a common emission from cars, power plants and industrial activity. Nitrogen dioxide can quickly transform into ground-level ozone, a major respiratory pollutant in urban smog. Nitrogen dioxide hotspots, used as an indicator of general air quality, occur over most major cities in developed and developing nations.
The following visualizations include two types of data. The absolute concentrations show the concentration of tropospheric nitrogen dioxide, with blue and green colors denoting lower concentrations and orange and red areas indicating higher concentrations.
The second type of data is the trend data from 2005 to 2014, which shows the observed change in concentration over the ten-year period. Blue indicated an observed decrease in nitrogen dioxide, and orange indicates an observed increase. Please note that the range on the color bars (text is in white) changes from location to location in order to highlight features seen in the different geographic regions.
In May of 2013, these emissions pushed the monthly average CO2 concentrations above 400 parts per million (ppm)—a level that has not been reached during the past 800,000 years. These ever-increasing levels are raising concerns about greenhouse-gas-induced climate change.
Tropospheric CO abundances are retrieved from the 4.67 m region of AIRS spectra as one of the last steps of the AIRS team algorithm. AIRS' 1600 km cross-track swath and cloud-clearing retrieval capabilities provide daily global CO maps over approximately 70% of the Earth.
The streak of red, orange, and yellow across South America, Africa, and the Atlantic Ocean in this animation points to high levels of carbon monoxide, as measured by the Atmospheric Infrared Sounder (AIRS) instrument flying on NASA's Aqua satellite. The carbon monoxide primarily comes from fires burning in the Amazon basin, with some additional contribution from fires in southern Africa. The animation shows carbon monoxide transport sweeping east throughout August, September, and October 2005.
This set of images shows Singapore and the nearby region on May 29, 2015, when air quality conditions were normal, and on September 25, 2015, when a thick smoky haze covered the nation. Each image reveals a true-color image [top] from the Moderate Resolution Imaging Spectroradiometer (MODIS) and atmospheric cross-section [bottom] from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). The CALIPSO image from September 25 reveals the thick layer of smoke (dark orange) in the atmosphere.
As the animation plays forward through mid-April, the concentration of carbon dioxide, shown in orange-yellow, in the middle part of Earth's lowest atmospheric layer, the troposphere, increases and spreads throughout the northern hemisphere, reaching a maximum around May. This blooming effect of carbon dioxide follows the seasonal changes that occur in northern latitude ecosystems, in which deciduous trees lose their leaves, resulting in a net release of carbon dioxide through a process called respiration. Carbon dioxide is also released in early spring as soils begin to warm. Almost 10 percent of atmospheric carbon dioxide passes through soils each year.
After April, the northern hemisphere moves into late spring and summer and plants begin to grow, reaching a peak in the late summer. The process of plant photosynthesis removes carbon dioxide from the air. The animation shows how carbon dioxide is scrubbed out of the atmosphere by the large volume of new and growing vegetation. Following the peak in vegetation, the drawdown of atmospheric carbon dioxide due to photosynthesis becomes apparent, particularly over the boreal forests.
Note that there is roughly a three-month lag between the state of vegetation at Earth's surface and its effect on carbon dioxide in the middle troposphere.
Data like these give scientists a new opportunity to better understand the relationships between carbon dioxide in Earth's middle troposphere and the seasonal cycle of vegetation near the surface.
Creating the Animation
This animation was created with data taken from two NASA spaceborne instruments. The concentration of carbon dioxide data from the Atmospheric Infrared Sounder (AIRS), a weather and climate instrument that flies aboard NASA's Aqua spacecraft, is overlain on measurements of vegetation index from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, also on NASA's Aqua spacecraft, to better understand how photosynthesis and respiration influences the atmospheric carbon dioxide cycle over the globe. The animation runs from January through December and repeats. The AIRS tropospheric carbon dioxide seasonal cycle values were made by averaging AIRS data collected between 2003 and 2010, from which the annual carbon dioxide growth trend of 2 parts per million per year has been removed. For example, the data used for January 1 is actually an average of eight years of AIRS carbon dioxide data taken each year on January 1. The vegetation values were made using data averaged over a four-year period, from 2003 to 2006.
Further Detail
AIRS uses infrared technology to determine the concentration of atmospheric water vapor and several important trace gases as well as information about temperature and clouds. AIRS orbits Earth from pole-to-pole at an altitude of 438 miles (705 kilometers), measuring Earth's infrared spectrum in 3,278 channels spanning a wavelength range from 3.74 microns to 15.4 microns. Originally designed to improve weather forecasts, AIRS has improved operational five-day weather forecasts more than any other single instrument over the past decade. AIRS has also been found to be sensitive to atmospheric carbon dioxide in the middle troposphere, at an altitude of 5 to 10 kilometers or 3 to 6 miles. AIRS is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena. For further information, access the AIRS project
The MODIS instrument is managed by NASA's Goddard Space Flight Center, Greenbelt, Md. For further information, access the MODIS project.
This image of Earth at night in 2016 was created with data from the Suomi National Polar-orbiting Partnership (NPP) satellite launched in October 2011 by NASA, the National Oceanic and Atmospheric Administration, and the U.S. Department of Defense. Each pixel shows roughly 0.46 miles (742 meters) across.
Scientists use the Suomi NPP night-lights dataset in many ways. Some applications include: forecasting a city’s energy use and carbon emissions; eradicating energy poverty and fostering sustainable energy development; providing immediate information when disasters strike; and monitoring the effects of conflict and population displacement. Scientists at NASA are working to automate nighttime VIIRS data processing so that data users are able to view nighttime imagery within hours of acquisition, which could lead to other potential uses by research, meteorological, and civic groups.
Scientists use the Suomi NPP night-lights dataset in many ways. Some applications include: forecasting a city’s energy use and carbon emissions; eradicating energy poverty and fostering sustainable energy development; providing immediate information when disasters strike; and monitoring the effects of conflict and population displacement. Scientists at NASA are working to automate nighttime VIIRS data processing so that data users are able to view nighttime imagery within hours of acquisition, which could lead to other potential uses by research, meteorological, and civic groups.
Overlaid with these nowcasts values are a Global Landslide Catalog(GLC) that was developed with the goal of identifying rainfall-triggered landslide events around the world, regardless of size, impact, or location. The GLC considers all types of mass movements triggered by rainfall, which have been reported in the media, disaster databases, scientific reports, or other sources. The visualization shows the distribution of landslides each month based on the estimated number of fatalities the event caused. The GLC has been compiled since 2007 at NASA's Goddard Space Flight Center and contains over 11,000 reports and growing. A new project called the Community the Cooperative Open Online Landslide Repository, or COOLR, provides the opportunity for the community to view landslide reports and contribute their own. The goal of the COOLR project is to create the largest global public online landslide catalog available and open to for anyone everyone to share, download, and analyze landslide information. More information on this system is available at: https://landslides.nasa.gov.
Landslides occur when an environmental trigger like an extreme rain event, often a severe storm or hurricane, and gravity's downward pull sets soil and rock in motion. Conditions beneath the surface are often unstable already, so the heavy rains act as the last straw that causes mud, rocks, or debris- or all combined- to move rapidly down mountains and hillsides. Unfortunately, people and property are often swept up in these unexpected mass movements. Landslides can also be caused by earthquakes, surface freezing and thawing, ice melt, the collapse of groundwater reservoirs, volcanic eruptions, and erosion at the base of a slope from the flow of river or ocean water. But torrential rains most commonly activate landslides.
For more information: https://www.nasa.gov/feature/goddard/2018/new-from-nasa-tracking-landslide-hazards-new-nasa-model-finds-landslide-threats-in-near-real
These before-and-after images of Puerto Rico’s nighttime lights are based on data captured by the Suomi NPP satellite. The data were acquired by the Visible Infrared Imaging Radiometer Suite (VIIRS) “day-night band,” which detects light in a range of wavelengths from green to near-infrared, including reflected moonlight, light from fires and oil wells, lightning, and emissions from cities or other human activity.
One pair of images shows differences in lighting across the entire island, while the other pair shows lighting around San Juan, capital of the commonwealth. One image in each pair shows a typical night before Maria made landfall, based upon cloud-free and low moonlight conditions; the second image is a composite that shows light detected by VIIRS on the nights of September 27 and 28, 2017. By compositing two nights, the image has fewer clouds blocking the view. (Note: some clouds still blocked light emissions during the two nights, especially across southeastern and western Puerto Rico.) The images show widespread outages around San Juan, including key hospital and transportation infrastructure.
This visualization tallies up all the lightning strikes detected by the Lightning Imaging Sensor (LIS) onboard the now defunct Tropical Rainfall Measuring Mission (TRMM) from April 1998 to January 2015—more than 16 years’ worth of lightning data. In orbit, LIS recorded the time of occurrence of a lightning event, measured the radiant energy, and estimated the location during both day and night conditions with high detection efficiency.
Lightning occurs more often over land than over the ocean because land absorbs sunlight and heats up faster than water. This means there is stronger convection and greater atmospheric instability, leading to the formation of more lightning-producing storms over land. The visualization starts out showing how the LIS sensor (green square) sweeps out an orbit path from approximately 35 degrees north to south latitude (blue), detecting lightning flashes as it passes overhead. As the sensor completes more orbits, a long-term count of the number of flashes observed at each location can be accumulated. Adjusting the total number of counts by the number of times the location has been observed gives the average flash rate, also known as a climatology (shown in the last frame of the visualization).
Forecasters were most concerned about Irma, which was on track to make landfall in densely populated South Florida on September 10 as a large category 4 storm. Meanwhile, category 2 Hurricane Katia was headed for Mexico, where it was expected to make landfall on September 9. And just days after Irma devastated the Leeward Islands, the chain of small Caribbean islands braced for another blow—this time from category 4 Hurricane Jose.
The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured the data for a mosaic of Katia, Irma, and Jose as they appeared in the early hours of September 8, 2017. The images were acquired by the VIIRS “day-night band,” which detects light signals in a range of wavelengths from green to near-infrared, and uses filtering techniques to observe signals such as city lights, auroras, wildfires, and reflected moonlight. In this case, the clouds were lit by the nearly full Moon. The image is a composite, showing cloud imagery combined with data on city lights.
On September 5, Irma was labeled as an “extremely dangerous” Category 5 storm. Irma passed north of the Dominican Republic on September 7. This historically intense hurricane, which maintained winds of 185 miles per hour longer than any storm ever recorded on Earth, made landfall on Cuba’s Camaguey archipelago as a Category 5 hurricane on September 8, again at Cudjoe Key in lower Florida Keys as a Category 4 on September 10, and a final time in Florida later that day on Marco Island as a Category 3 storm. On September 6, Katia had strengthened over the southwestern Gulf of Mexico and was upgraded from tropical storm to Category 1 hurricane status. Katia shortly became a Category 2 storm on September 8, making landfall later that evening as a Category 1 storm north of Tecolutla, Mexico. Jose became a Category 1 storm on September 6 and rapidly intensified into a Category 4 storm by September 8. It remained a Category 4 storm until September 10. As of September 12, Jose is a Category 1 storm. The National Hurricane Center predicts that the storm will not make landfall in the next five days.
In this page the visualization content is offered in two different modes to accommodate stereoscopic systems as: Left and Right Eye separate and Left and Right Eye side-by-side combined on the same frame.
This set of Landsat images shows the region on [left to right] July 22, July 29, and August 8 in true color (using bands 4, 3, and 2) and also in shortwave and near-infrared light (using bands 7, 5, and 4). Active fires, which can be detected based on calculations using the shortwave infrared and near-infrared bands, are shown in red on the true color images. The shortwave and near-infrared images penetrate the smoke to provide a clearer view of the burn scar. In this false-color view, active fires are bright red and orange, scarred land is dark red, and intact vegetation and human development are shades of green.
More information on the Fire Information for Resource Management System (FIRMS) is available at http://maps.geog.umd.edu/firms/.