Content Contact:
start frame | end frame | total missing | Start time (TAI) | End time (TAI) |
---|---|---|---|---|
2766 | 2770 | 5 | 2014-04-15T20:12:00.000 | 2014-04-15T20:20:00.000 |
7801 | 7803 | 3 | 2014-04-22T20:02:00.000 | 2014-04-22T20:06:00.000 |
7806 | 7808 | 3 | 2014-04-22T20:12:00.000 | 2014-04-22T20:16:00.000 |
8317 | 8401 | 85 | 2014-04-23T13:14:00.000 | 2014-04-23T16:02:00.000 |
8414 | 8496 | 83 | 2014-04-23T16:28:00.000 | 2014-04-23T19:12:00.000 |
12846 | 12850 | 5 | 2014-04-29T20:12:00.000 | 2014-04-29T20:20:00.000 |
17881 | 17883 | 3 | 2014-05-06T20:02:00.000 | 2014-05-06T20:06:00.000 |
17886 | 17888 | 3 | 2014-05-06T20:12:00.000 | 2014-05-06T20:16:00.000 |
22926 | 22930 | 5 | 2014-05-13T20:12:00.000 | 2014-05-13T20:20:00.000 |
27961 | 27963 | 3 | 2014-05-20T20:02:00.000 | 2014-05-20T20:06:00.000 |
27966 | 27968 | 3 | 2014-05-20T20:12:00.000 | 2014-05-20T20:16:00.000 |
30080 | 30135 | 56 | 2014-05-23T18:40:00.000 | 2014-05-23T20:30:00.000 |
33006 | 33010 | 5 | 2014-05-27T20:12:00.000 | 2014-05-27T20:20:00.000 |
38041 | 38043 | 3 | 2014-06-03T20:02:00.000 | 2014-06-03T20:06:00.000 |
38046 | 38048 | 3 | 2014-06-03T20:12:00.000 | 2014-06-03T20:16:00.000 |
This flare is classified as an X1.2-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc.
Note in the pictures how crisp the horizon is on the moon, a reflection of the fact that the moon has no atmosphere around it to distort the light from the sun.
The sun emitted a mid-level solar flare, peaking at 11:11 a.m. EST on Jan. 30, 2014. Images of the flare were captured by NASA's Solar Dynamics Observatory, or SDO, shortly after the observatory witnessed a lunar transit. The black disk of the moon can be seen in the lower right of the images.
Experimental NASA research models, based on observations from the Solar Terrestrial Relations Observatory (STEREO) and the ESA/NASA mission the Solar and Heliospheric Observatory, show that the CME left the sun at speeds of 275 miles per second. This is a fairly typical speed for CMEs, though much slower than the fastest ones, which can be almost ten times that speed.
This visualization is constructed from a computer model run of the January 13, 2013 CME. The preliminary CME parameters were measured from instruments on the STEREO (the red and blue satellite icons) and SDO (in Earth orbit) satellites. The Enlil model was used to propagate those parameters through the solar system. From this model, they can estimate the strength and time of arrival of the CME at various locations around the solar system. This allows other missions to either safe-mode their satellites for protection, or allow them to conduct measurements to test the accuracy of the model.
When Earth-directed, CMEs can cause a space weather phenomenon called a geomagnetic storm, which occurs when they successfully connect up with the outside of the Earth's magnetic envelope, the magnetosphere, for an extended period of time. In the past, CMEs of this speed have not caused substantial geomagnetic storms. They have caused auroras near the poles but are unlikely to affect electrical systems on Earth or interfere with GPS or satellite-based communications systems.
Two active regions — named AR 11652 and AR 11654 by the National Oceanic and Atmospheric Administration (NOAA) — have produced four low-level M-class flares since Jan. 11. Solar flares are powerful bursts of light and radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however, when intense enough, they can disturb the atmosphere in the layer where GPS and communications signals travel. M-class flares are the weakest flares that can still cause some space weather effects near Earth. The recent flares caused weak radio blackouts and their effects have already subsided.
NOAA's Space Weather Prediction Center is the United States Government official source for space weather forecasts.
Not to be confused with a solar flare, a CME is a solar phenomenon that can send solar particles into space and reach Earth one to three days later.
Earth-directed CMEs can cause a space weather phenomenon called a geomagnetic storm, which occurs when they connect with the outside of the Earth's magnetic envelope, the magnetosphere, for an extended period of time. In the past, CME's such as this have caused auroras near the poles but didn't disrupt electrical systems on Earth or interfere with GPS or satellite-based communications systems.
In reality, the sun is not made of fire, but of something called plasma: particles so hot that their electrons have boiled off, creating a charged gas that is interwoven with magnetic fields.
These images were captured on Sept. 29-30, 2013, by NASA's Solar Dynamics Observatory, or SDO, which constantly observes the sun in a variety of wavelengths.
Different wavelengths help capture different aspect of events in the corona. The red images shown in the movie help highlight plasma at temperatures of 90,000° F and are good for observing filaments as they form and erupt. The yellow images, showing temperatures at 1,000,000° F, are useful for observing material coursing along the sun's magnetic field lines, seen in the movie as an arcade of loops across the area of the eruption. The browner images at the beginning of the movie show material at temperatures of 1,800,000° F, and it is here where the canyon of fire imagery is most obvious. By comparing this with the other colors, one sees that the two swirling ribbons moving farther away from each other are, in fact, the footprints of the giant magnetic field loops, which are growing and expanding as the filament pulls them upward.
But in ultraviolet light, in particular the 30.4 nanometer line of the helium ion, we see much more activity. Dark, wispy lines of cooler solar filaments (the term used for solar prominences when seen against the disk) stretch across the disk. The same structures, seen against the fainter glow of the solar corona, resemble slowly evolving flames on the limb of the Sun. Solar active regions surrounding the sunspots, appear bright in ultraviolet light.
Such eruptions soon leave SDO's field of view, but other satellites in NASA's Heliophysics fleet can pick them up, tracking such space weather to determine if they are headed toward Earth or spacecraft near other planets. With advance warning, many space assets can be put into safe mode and protect themselves from the effects of such particle radiation.
In addition to the images captured by SDO, the May 1, 2013 CME was also observed by the ESA/NASA Solar and Heliospheric Observatory (SOHO). SOHO houses two overlapping coronagraphs—telescopes where the bright sun is blocked by a disk so it doesn't overpower the fainter solar atmosphere—and they both saw the CME continue outward. The LASCO C2 coronagraph shows the region out to about 2.5 million miles. The LASCO C3 coronagraph expands even farther out to around 13.5 million miles. Both of these instruments show the CME as it expands and becomes fainter on its trip away from the sun.
NASA's Solar Terrestrial Relations Observatory (STEREO) Ahead satellite saw the eruption from a very different angle. It, along with its twin STEREO Behind, is orbiting at a similar distance as Earth. STEREO-A orbits slightly faster than Earth and STEREO-B orbits slightly slower. Currently, STEREO-A is more than two-thirds of the way to being directly behind the sun, and has a view of the far side of the sun. From this perspective, the CME came off the right side of the sun. STEREO has an extreme ultraviolet camera similar to SDO's, but it also has coronagraphs like SOHO. As a result, using its two inner coronagraphs, it was able to track the CME from the solar surface out to 6.3 million miles.
Working together, such missions provide excellent coverage of a wide variety of solar events, a wealth of scientific data—and lots of beautiful imagery.
Watch this video on YouTube.
On May 12, 2013, the sun emitted a significant solar flare, peaking at 10 p.m. EDT. This flare is classified as an X1.7, making it the first X-class flare of 2013. The flare was also associated with another solar phenomenon, called a coronal mass ejection (CME) that can send solar material out into space. This CME was not Earth-directed.
The May 12 flare was also associated with a coronal mass ejection, another solar phenomenon that can send billions of tons of solar particles into space, which can affect electronic systems in satellites and on the ground. Experimental NASA research models show that the CME left the sun at 745 miles per second and is not Earth-directed, however its flank may pass by the STEREO-B and Spitzer spacecraft, and their mission operators have been notified. If warranted, operators can put spacecraft into safe mode to protect the instruments from solar material. There is some particle radiation associated with this event, which is what can concern operators of interplanetary spacecraft since the particles can trip computer electronics on board.
Experimental NASA research models, based on observations from NASA's Solar Terrestrial Relations Observatory and ESA/NASA's Solar and Heliospheric Observatory show that the CME left the sun at speeds of around 1350 miles per second, which is a fast speed for CMEs.
Earth-directed CMEs can cause a space weather phenomenon called a geomagnetic storm, which occurs when they funnel energy into Earth's magnetic envelope, the magnetosphere, for an extended period of time. The CME's magnetic fields peel back the outermost layers of Earth's fields changing their very shape. Magnetic storms can degrade communication signals and cause unexpected electrical surges in power grids. They also can cause aurora. Storms are rare during solar minimum, but as the sun's activity ramps up every 11 years toward solar maximum—currently expected in late 2013—large storms occur several times per year.
In the past, geomagnetic storms caused by CMEs of this strength and direction have usually been mild.
In addition, the CME may pass by additional spacecraft: Messenger, STEREO B, Spitzer, and their mission operators have been notified. If warranted, operators can put spacecraft into safe mode to protect the instruments from the solar material.
This visualization was generated using high time resolution (12 seconds) data from the Atmospheric Imaging Assembly (AIA). Two datasets are used, the SDO/AIA 304 Ångstrom wavelength (orange color table) and the 171 Ångstrom wavelength (gold color table). These are wavelengths in the ultraviolet band of the electromagnetic spectrum. They are not visible to the human eye or to ground-based telescopes so coded colors are used in presentation.
It is the source material for "August 31, 2012 Magnificent CME" visualization.
The footage in this video was collected by the Solar Dynamics Observatory's AIA instrument. SDO collected one frame every 12 seconds so each second in this video corresponds to 6 minutes of real time. The video covers 4:30 UTC on July 19th to 2:00 UTC on July 20th, a period of 21 hours and 30 minutes.
Music—"Thunderbolt" by Lars Leonhard
Eight hours later, on July 19, the same region flared again. This time the flux rope's connection to the sun was severed, and the magnetic fields escaped into space, dragging billions of tons of solar material along for the ride — a classic CME.
This visualization has the full 4Kx4K frames from the 17.1 nm and 13.1 nm filters on the Solar Dynamics Observatory. 2Kx2K MPEG-4 movies are also available.
Some artifacts may be visible from the compositing, but you have to look pretty closely to see them.
The color table threshold was raised for these images, reducing the amount of noise visible in the images.
Note: There is an interesting artifact worthy of mention and clarification, and that is as Venus crosses the solar limb, the limb appears to be visible through the planet in some of the imagers (most notably the ultraviolet channels). Discussion with the scientists who built the imagers suggest this might be 'crosstalk' between the readouts of the four CCD panels that make up a complete image. It is an artifact of the imaging system.
These are the basic images, collected from the telemetry. To see the insets composited, see Venus Transit 2012 Composited Visuals.
Earth's magnetosphere also underwent a minor geomagnetic storm on the evening of July 6 in response to relatively slow coronal mass ejections (CMEs) that have erupted from other regions on the sun since July 4.
The primary feature of interest was the whirrling tower of plasma on the lower right limb.
While the Solar Dynamics Observatory (SDO) has significantly less than 100 eyes, (see "SDO Jewelbox: The Many Eyes of SDO"), seeing connections in the solar atmosphere through the many filters of SDO presents a number of interesting challenges. This visualization experiment illustrates a mechanism for highlighting these connections.
This visualization is a variation of the original Solar Dynamics Observatory - Argo view. In this case, the different wavelength filters are presented in three sets around the Sun at full 4Kx4K resolution. This enables monitoring of changes in time over all wavelengths at any location around the limb of the Sun.
The wavelengths presented are: 617.3nm optical light from SDO/HMI. From SDO/AIA we have 170nm (pink), then 160nm (green), 33.5nm (blue), 30.4nm (orange), 21.1nm (violet), 19.3nm (bronze), 17.1nm (gold), 13.1nm (aqua) and 9.4nm (green).
We've locked the camera to rotate the view of the Sun so each wedge-shaped wavelength filter passes over a region of the Sun. As the features pass from one wavelength to the next, we can see dramatic differences in solar structures that appear in different wavelengths.
While the Solar Dynamics Observatory (SDO) has significantly less than 100 eyes, (see "SDO Jewelbox: The Many Eyes of SDO"), seeing connections in the solar atmosphere through the many filters of SDO presents a number of interesting challenges. This visualization experiment illustrates a mechanism for highlighting these connections.
The wavelengths presented are: 617.3nm optical light from SDO/HMI. From SDO/AIA we have 170nm (pink), then 160nm (green), 33.5nm (blue), 30.4nm (orange), 21.1nm (violet), 19.3nm (bronze), 17.1nm (gold), 13.1nm (aqua) and 9.4nm (green).
We've locked the camera to rotate the view of the Sun so each wedge-shaped wavelength filter passes over a region of the Sun. As the features pass from one wavelength to the next, we can see dramatic differences in solar structures that appear in different wavelengths.
Frames were generated using the standard SDO AIA 131 Å color table and an enhanced version to reveal the finer details of the coronal loops, which are overly saturated in the standard color table ranges.
For a closeup view of of one of these sunspot groups, see animation 3898, Growing Sunspots - Tracking Closeup: February 2011
Material which does not reach solar escape velocity can be seen falling back and striking the solar surface, sometimes triggering smaller events.
This image sequence is captured at one minute intervals and designed to play synchronously with animations 3839 (171 Ångstroms), 3840 (211 Ångstroms) and 3841 (1700 Ångstroms).
Material which does not reach solar escape velocity can be seen falling back and striking the solar surface, sometimes triggering smaller events.
This image sequence is captured at one minute intervals and designed to play synchronously with animations 3838 (304 Ångstroms), 3840 (211 Ångstroms) and 3841 (1700 Ångstroms).
Material which does not reach solar escape velocity can be seen falling back and striking the solar surface, sometimes triggering smaller events.
This image sequence is captured at one minute intervals and designed to play synchronously with animations 3839 (171 Ångstroms), 3838 (304 Ångstroms) and 3841 (1700 Ångstroms).
This image sequence is captured at one minute intervals and designed to play synchronously with animations 3839 (171 Ångstroms), 3840 (211 Ångstroms) and 3838 (304 Ångstroms).
This visualization consists of eight hours of SDO AIA imagery from the 30.4 nanometer filter (304 Ångstroms). This sequence plays at the full time cadence of the AIA instrument - one image every twelve seconds of real time - and showing thirty images per second on playback.
The Solar Dynamics Observatory (SDO) is actually repointed to better observe the comet's approach to the Sun.
This visualization was generated using quick-look time resolution (36 seconds) data from the Atmospheric Imaging Assembly (AIA). Two datasets are used, the SDO/AIA 94 Ångstrom wavelength (green color table). This wavelength is in the ultraviolet band of the electromagnetic spectrum. It is not visible to the human eye or to ground-based telescopes so coded colors are used in presentation.
It is the source material for "SDO Year 2 video".
This movie is generated for a wavelength of 94 Ångstroms (9.4 nanometers) which highlights a spectral line emitted by iron atoms that have lost 17 electrons (also known as iron-18 or Fe XVIII) at temperatures of 6,000,000 K. Temperatures like this represent regions of the corona during a solar flare.
This visualization is one of a set of visualizations (others linked below) covering the same time span of 17 hours over the full wavelength range of the instruments. They are setup to play synchronously on a Hyperwall, or can be run individually.
The images are sampled every 36 seconds, 1/3 of the standard 12 second time-cadence for SDO. This visualization is useful for illustrating how different solar phenomena, such as sunspots and active regions, look very different in different wavelengths of light. These differences enable scientists to study them more completely, with an eventual goal of improving Space Weather forecasting.
This movie is generated for a wavelength of 131 Ångstroms (13.1 nanometers) which highlights a spectral line emitted by iron atoms that have lost 19 and 22 electrons (also known as iron-20 or Fe XX; and iron-23 or FeXXIII) at temperatures of 10,000,000 K. Temperatures like this represent material in a solar flare.
This visualization is one of a set of visualizations (others linked below) covering the same time span of 17 hours over the full wavelength range of the mission. They are setup to play synchronously on a Hyperwall, or can be run individually.
The images are sampled every 36 seconds, 1/3 of the standard time-cadence for SDO. This visualization is useful for illustrating how different solar phenomena, such as sunspots and active regions, look very different in different wavelengths of light. These differences enable scientists to study them more completely, with an eventual goal of improving Space Weather forecasting.
This movie is generated for a wavelength of 171 Ångstroms (17.1 nanometers) which highlights a spectral line emitted by iron atoms that have lost 8 electrons (also known as iron-9 or Fe IX) at temperatures of 600,000 K. Temperatures like this show the quiet corona and magnetic structures like coronal loops.
This visualization is one of a set of visualizations (others linked below) covering the same time span of 17 hours over the full wavelength range of the mission. They are setup to play synchronously on a Hyperwall, or can be run individually.
The images are sampled every 36 seconds, 1/3 of the standard time-cadence for SDO. This visualization is useful for illustrating how different solar phenomena, such as sunspots and active regions, look very different in different wavelengths of light. These differences enable scientists to study them more completely, with an eventual goal of improving Space Weather forecasting.
This movie is generated for a wavelength of 193 Ångstroms (19.3 nanometers) which highlights a spectral line emitted by iron atoms that have lost 11 electrons (also known as iron-12 or Fe XII) at temperatures of 1,000,000 K as well as iron atoms that have lost 23 electrons (also known as iron-24 or FeXXIV) at temperatures of 20,000,000K. The former represents a slightly higher region of the corona and the latter represents the much hotter material of a solar flare. This wavelength also makes coronal holes (which appear as dark regions near the solar surface) more visible.
This visualization is one of a set of visualizations (others linked below) covering the same time span of 17 hours over the full wavelength range of the mission. They are setup to play synchronously on a Hyperwall, or can be run individually.
The images are sampled every 36 seconds, 1/3 of the standard time-cadence for SDO. This visualization is useful for illustrating how different solar phenomena, such as sunspots and active regions, look very different in different wavelengths of light. These differences enable scientists to study them more completely, with an eventual goal of improving Space Weather forecasting.
This movie is generated for a wavelength of 211 Ångstroms (21.1 nanometers) which highlights a spectral line emitted by iron atoms that have lost 13 electrons (also known as iron-14 or Fe XIV) at temperatures of 2,000,000 K. These images show hotter, active regions in the sun's corona.
This visualization is one of a set of visualizations (others linked below) covering the same time span of 17 hours over the full wavelength range of the mission. They are setup to play synchronously on a Hyperwall, or can be run individually.
The images are sampled every 36 seconds, 1/3 of the standard time-cadence for SDO. This visualization is useful for illustrating how different solar phenomena, such as sunspots and active regions, look very different in different wavelengths of light. These differences enable scientists to study them more completely, with an eventual goal of improving Space Weather forecasting.
This movie is generated for a wavelength of 304 Ångstroms (30.4 nanometers) which highlights a spectral line emitted by helium atoms that have lost 1 electron (also known as helium-2 or He II) at temperatures of 50,000 K. This light is emitted from the upper transition region and the chromosphere. Solar prominences are readily visible at this wavelength.
This visualization is one of a set of visualizations (others linked below) covering the same time span of 17 hours over the full wavelength range of the mission. They are setup to play synchronously on a Hyperwall, or can be run individually.
The images are sampled every 36 seconds, 1/3 of the standard time-cadence for SDO. This visualization is useful for illustrating how different solar phenomena, such as sunspots and active regions, look very different in different wavelengths of light. These differences enable scientists to study them more completely, with an eventual goal of improving Space Weather forecasting.
This movie is generated for a wavelength of 335 Ångstroms (33.5 nanometers) which highlights a spectral line of iron that has lost 15 electrons (also known as iron-16 or Fe XVI) at temperatures of 2,500,000 K. These images show active regions in the corona.
This visualization is one of a set of visualizations (others linked below) covering the same time span of 17 hours over the full wavelength range of the mission. They are setup to play synchronously on a Hyperwall, or can be run individually.
The images are sampled every 36 seconds, 1/3 of the standard time-cadence for SDO. This visualization is useful for illustrating how different solar phenomena, such as sunspots and active regions, look very different in different wavelengths of light. These differences enable scientists to study them more completely, with an eventual goal of improving Space Weather forecasting.
This movie is generated for a wavelength of 1600 Ångstroms (160.0 nanometers) which highlights a spectral line of carbon that has lost 3 electrons (also known as carbon-4 or C-IV) at temperatures of 10,000 K. C IV at these temperatures is present in what's called the transition region between the sun's surface and the lowest levels of the sun's atmosphere, the chromosphere.
This visualization is one of a set of visualizations (others linked below) covering the same time span of 17 hours over the full wavelength range of the mission. They are setup to play synchronously on a Hyperwall, or can be run individually.
The images are sampled every 36 seconds, 1/3 of the standard time-cadence for SDO. This visualization is useful for illustrating how different solar phenomena, such as sunspots and active regions, look very different in different wavelengths of light. These differences enable scientists to study them more completely, with an eventual goal of improving Space Weather forecasting.
This movie is generated for a wavelength of 1700 Ånstroms (170.0 nanometers) which is in the ultraviolet band showing the lower level of the Sun's atmosphere, called the chromosphere.
This visualization is one of a set of visualizations (others linked below) covering the same time span of 17 hours over the full wavelength range of the mission. They are setup to play synchronously on a Hyperwall, or can be run individually.
The images are sampled every 36 seconds, 1/3 of the standard time-cadence for SDO. This visualization is useful for illustrating how different solar phenomena, such as sunspots and active regions, look very different in different wavelengths of light. These differences enable scientists to study them more completely, with an eventual goal of improving Space Weather forecasting.
This movie is generated for a wavelength of 4500 Ångstroms (450.0 nanometers) which corresponds to visible light, showing the Sun's visible surface, or photosphere. This wavelength can also be seen from the surface of the Earth, though not with the clarity possible from SDO. The dark regions on the left side are sunspots (Wikipedia) - essentially magnetic storms in the photosphere.
This visualization is one of a set of visualizations (others linked below) covering the same time span of 17 hours over the full wavelength range of the mission. They are setup to play synchronously on a Hyperwall, or can be run individually.
The images are sampled every 36 seconds, 1/3 of the standard time-cadence for SDO. This visualization is useful for illustrating how different solar phenomena, such as sunspots and active regions, look very different in different wavelengths of light. These differences enable scientists to study them more completely, with an eventual goal of improving Space Weather forecasting.
The Helioseismic Magnetic Imager (HMI) aboard the Solar Dynamics Observatory takes a series of images every 45 seconds in a very narrow range of wavelengths in visible light of the solar photosphere. The wavelengths correspond to a region around the 6173 Ångstroms (617.3 nanometers) spectral line of neutral iron (Fe I). From this series of images, it constructs a set of images which extract other characteristics of the photosphere. For this dataset, it measures the splitting of the spectral lines to determine the intensity of the magnetic field on the solar surface. White represents north magnetic polarity and black represents south magnetic polarity.
This visualization is one of a set of visualizations (others linked below) covering the same time span of 17 hours over the full wavelength range of the mission. They are setup to play synchronously on a Hyperwall, or can be run individually.
The images are sampled every 36 seconds, 1/3 of the standard time-cadence for SDO. This visualization is useful for illustrating how different solar phenomena, such as sunspots and active regions, look very different in different wavelengths of light. These differences enable scientists to study them more completely, with an eventual goal of improving Space Weather forecasting.
The Helioseismic Magnetic Imager (HMI) aboard the Solar Dynamics Observatory takes a series of images every 45 seconds in a very narrow range of wavelengths in visible light of the solar photosphere. The wavelengths correspond to a region around the 6173 Ångstroms (617.3 nanometers) spectral line of neutral iron (Fe I). From this series of images, it constructs a set of images which extract other characteristics of the photosphere. For this dataset, it measures the shifting of the spectral lines to determine the velocity of gas flows on the solar surface. This spectral line shift is due to the Doppler effect (Wikipedia). Blue represents motion towards the observer. Red indicates motion away from the observer.
For the images below, the color is dominated by the solar rotation, so the solar limb on the right is moving away from us (and therefore red) while the left limb is moving towards us (and therefore blue). Motions on the solar surface generate the rippling in the color and you can see evidence of surface flows around the sunspot near the left limb.
This visualization is one of a set of visualizations (others linked below) covering the same time span of 17 hours over the full wavelength range of the mission. They are setup to play synchronously on a Hyperwall, or can be run individually.
The images are sampled every 36 seconds, 1/3 of the standard time-cadence for SDO. This visualization is useful for illustrating how different solar phenomena, such as sunspots and active regions, look very different in different wavelengths of light. These differences enable scientists to study them more completely, with an eventual goal of improving Space Weather forecasting.
The Solar Dynamics Observatory (SDO) observes the Sun with many different instruments, in many different wavelengths of light. Many of these capabilities are not possible for ground-based observatories - hence the need for a space-based observing platform.
The Helioseismic Magnetic Imager (HMI) aboard the Solar Dynamics Observatory takes a series of images every 45 seconds in a very narrow range of wavelengths in visible light of the solar photosphere. The wavelengths correspond to a region around the 6173 Ångstroms (617.3 nanometers) spectral line of neutral iron (Fe I). From this series of images, it constructs a set of images which extract other characteristics of the photosphere. For this dataset, it shows the solar photosphere in visible light.
This visualization is one of a set of visualizations (others linked below) covering the same time span of 17 hours over the full wavelength range of the mission. They are setup to play synchronously on a Hyperwall, or can be run individually.
The images are sampled every 36 seconds, 1/3 of the standard time-cadence for SDO. This visualization is useful for illustrating how different solar phenomena, such as sunspots and active regions, look very different in different wavelengths of light. These differences enable scientists to study them more completely, with an eventual goal of improving Space Weather forecasting.
Just as we do on Earth, the Solar Dynamics Observatory satellite periodically crosses the Moon's shadow and experiences a solar eclipse. During the eclipse witnessed by SDO on October 7, 2010, the southern hemisphere of the Moon was silhouetted against the solar disk, revealing some especially prominent mountain peaks near the Moon's south pole. By using elevation data from Lunar Reconnaissance Orbiter to visualize the Moon from SDO's point of view, it's possible to identify these peaks. Although all of these are well-known features, none of them have official names. The following list corresponds to the labels in the animation, from left to right.
The Moon visualization uses the latest albedo and elevation maps from Lunar Reconnaissance Orbiter (LRO).