Content Contact:
The Earth is not flat.
That's the conceptual spark for the astounding movie created at the NASA Goddard Space Flight Center. Using an advanced media projection technology called Science On a Sphere developed by the National Oceanic and Atmospheric Administration (NOAA), FOOTPRINTS is the first fully produced film of its kind. The movie presents advanced satellite data and other visual effects on a dramatic spherical screen, affording viewers a chance to experience planets and planetary science in a way that's more natural to their actual appearance. The Earth guest stars in a variety of guises, from depictions of the biosphere to planetary views of city lights at night to dramatic examinations about the science of hurricane formation. Other moons and planets make exciting cameos too, with special presentations of Mars and Earth's moon.
Media and visualization experts at NASA began working with the NOAA technology in the fall of 2005. Until that time, Science On a Sphere had already established an impressive reputation for depiction of planetary data in a dramatic way. But FOOTPRINTS marks the first time that a thorough set of techniques and artistic rules have been applied in the service of a full featured production presented on a spherical screen.
But more than just a showcase for discrete data sets, the 16 minute film provides a conceptual framework about the human drive to explore. By contextualizing data with compelling language, inventive pictures, and dramatic sound, FOOTPRINTS seeks to engage and enthuse audiences who may not understand the practicalities and majesty of NASA's and NOAA's observations, and may not otherwise have any contact with what these two science agencies actually do.
As a presentation tool, Science On a Sphere is relatively new. NOAA invented and developed its core hardware and software within the past few years. According to Dr. Alexander MacDonald, the NOAA scientist located at the Earth System Research Laboratory in Boulder, Colorado, who originally conceived of it, Science On a Sphere is intended to present global science as it should be presented and to stimulate students to learn more about the Earth's environment and the solar system.
In the past few years Science On a Sphere systems have begun to be installed in museums and science centers around the world. Scientists and administrators at NASA Goddard saw potential to use the Sphere as both a teaching and an outreach tool and with NOAA's support decided to bring one to the campus. It's currently installed at the Goddard Visitor Center.
For several years there has been a slowly growing list of planetary data sets that can play on Spheres located in museums and institutions around the country. NASA and NOAA intend to dramatically augment that collection with new images and data. But FOOTPRINTS changes the playing field. With the release of this film, the Goddard team dramatically catapults forward the capabilities of the system, taking it far beyond its initial limits of merely depicting planetary data sets. Beyond encompassing state of the art data visualizations, the production team developed new ways for working with computer generated illustrations and animation, high definition video, graphics, text, and more. In a little more than three and a half months, the core group developed a palette of new technical processes and aesthetic guidelines for presenting media on the Sphere.
The movie asks audiences to consider the idea that what they know is only a function of what questions they're willing to ask. It's an intellectual and creative backdrop to the overall production, and also a philosophical backdrop to the excitement about the vital work that NASA and NOAA do in service of the public interest.
The silvery disc of inspiration for countless philosophers and lovers also happens to be one of the great destinations in the annals of exploration. Earth's moon shines like a beacon, beckoning scientists and the simply curious. But it's been a long time since anyone has visited, and even the most basic signals from unmanned probes have been few and far between.
Unfold your maps.
With the advent of the NASA's Lunar Reconnaissance Orbiter (LRO), humanity makes a return to the moon like a herald announcing a new age. To commemorate the mission and champion the value of future planned lunar expeditions, the Space Agency created a new short film called RETURN TO THE MOON. Designed expressly for the Science On a Sphere platform, a striking spherical projection system now playing in theaters around the world, RETURN TO THE MOON shows off our silver sibling like a jewel of the night.
Starting with a brief historical look back at the legacy of human achievement in lunar exploration, the movie presses audiences to take stock in their own relationship to the moon. Then it takes them on a journey. Travelling along with the LRO spacecraft, viewers will discover some of the essential scientific subjects that scientists plan to study. They'll follow LRO as it makes orbits around the moon, gathering data about the surface and what may lie beneath. And then, in a dramatic demonstration of a daring part of the mission, moviegoers will witness the inventive and powerful moment when NASA engineers intentionally crash a research probe into the surface of the moon to dig beneath the top layer. The space agency calls that impact probe LCROSS, and as both a research tool and a cinematic experience, it promises to deliver something exciting.
RETURN TO THE MOON was produced by the media team at the Goddard Space Flight Center. One of NASA's premiere media teams, this group not only delivers state of the art data visualizations of ongoing research, but also helped write the book on spherical filmmaking. At its time of release, RETURN TO THE MOON was the third fully produced spherical movie from Goddard, and an exciting departure in terms of how these kind of products fuse dramatic presentational style with robust science.
This narrated movie is created for Science On a Sphere, a platform designed by NOAA that displays movies on a spherical screen. Audiences can view the movie from any side of the sphere and can see any part of Earth. During this show viewers will be guided through a variety of precipitation patterns and display features such as the persistent band of the heaviest rainfall around the equator and tight swirls of tropical storms in the Northern Hemisphere. At subtropical latitudes in both hemispheres there are persistent dry areas and this is where most of the major deserts reside. Sea surface temperature and winds are also shown to highlight the interconnectedness of the Earth system. The movie concludes with near real-time global precipitation data from GPM, which is provided to Science On a Sphere roughly six hours after the observation. To download this movie formatted for a spherical screen, visit NOAA's official Science On a Sphere website below: • A Global Tour of Precipitation from NASA • Near Real-Time Global Precipitation Data
Released on March 27, 2009, FROZEN is NASA's second major production for the Science On a Sphere platform, a novel cinema-in-the-round technology developed by the Space Agency's sibling NOAA. Viewers see the Earth suspended in darkness as if it were floating in space. Moving across the planet's face, viewers see the undulating wisps of clouds, the ephemeral sweep of fallen snow, the churning crash of shifting ice, and more.
FROZEN brings the Earth alive. Turning in space, the sphere becomes a portal onto a virtual planet, complete with churning, swirling depictions of huge natural forces moving below. FROZEN features the global cryosphere, those places on Earth where the temperature doesn't generally rise above water's freezing point. As one of the most directly observable climate gauges, the changing cryosphere serves as a proxy for larger themes.
But just as thrilling as this unusual—and unusually realistic—look at the planet's structure and behavior is the sheer fun and fascination of looking at a spherically shaped movie. FROZEN bends the rules of cinema, revealing new ways to tell exciting, valuable stories of all kinds. The movie may be FROZEN, but the experience itself rockets along.
In case you haven’t heard, El Niño is starting to make headlines this year. Often nicknamed "the bad boy of weather," who is this guy?
A long time ago, fishermen off the west coast of South America — one of the world's most productive fisheries — noticed that some years the fish disappeared. This was especially noticeable around Christmas time — giving it the name El Niño, which means Christ child in Spanish. Today we know why El Niño happens — but knowing when it will happen is still a challenge.
Normally, winds blow from east to west along the equator, pushing surface water westward. As the water moves away from the east, nutrient-rich deeper ocean water rises to fill the void (called upwelling.) When nutrients rise into sunlight, they cause blooms of tiny plants called phytoplankton. These plants feed the entire marine food web from small fish such as sardines to bigger fish, sea birds, and marine mammals.
When an El Niño develops, the normal east-to-west winds die and warm surface water from the west Pacific moves eastward. This stops the upwelling in the east. Without the supply of deeper, nutrient-rich water, less phytoplankton bloom and the fisheries collapse. From satellites in space we see how these changes impact the ocean’s color. Normally, the ocean looks more green along the equator (image below, left.) During El Niño, the ocean looks more blue and less green because there is less plant life (images below, right.) While this color change is subtle to our eyes, it means life or death for the species that depend upon plankton for food. Some animals starve (e.g. sea lions, marine iguanas, Galapagos penguins) while others move away to look for food elsewhere.
In addition to disrupting the marine food web and reducing the fish catch in the Pacific, El Niño is linked to unusual weather around the world: more typhoons in the Pacific, fewer hurricanes in the Atlantic, more rain in California, less rain in Southeast Asia and Australia, and warmer weather in South America.
The monstrous 1997/98 El Niño led to extreme events with catastrophic consequences. There were floods and landslides in some places and extreme drought in others. This is how El Niño got his reputation as a "bad boy." We still can’t predict El Niño more than a few months in advance and won't know its full strength until it peaks around December, but this year’s El Niño is shaping up to be a bully.
As a scientist, I've been studying the interaction of physical oceanography and biology over long time scales (decades and more.) I also create a series of short visualizations called ClimateBits that play on Science On a Sphere displays at museums and science centers. Here's one I made about El Niño using chlorophyll images (from the MODIS sensor onboard the Aqua satellite) and sea-surface temperatures (from NOAA AVHRR and NASA AMSR-E satellites and oceanic buoy measurements.)
To give background on motion in the ocean that is key to this story, I start the piece with one of my favorite visualizations by the NASA Scientific Visualization Studio showing output from an ocean circulation model color coded with sea surface temperatures.
To see it on YouTube and for more information about El Niño and other Earth science concepts, visit: http://climatebits.org.
-- Stephanie Schollaert Uz, PhD, NASA GSFC, Earth Sciences Division, Ocean Ecology Lab
Earth radius | 6378.137 km |
---|---|
Earth flattening | 1 / 298.257 (the WGS 84 ellipsoid) |
Moon radius | 1737.4 km (k = 0.2723993) |
Sun radius | 696,000 km (959.634 arcsec at 1 AU) |
Ephemeris | DE 421 |
Earth orientation | SOFA library iauC2t06a() |
Delta UTC | 69.184 seconds (TT – TAI + 37 leap seconds) |
ΔT | 69.368 seconds |
Technical Details
The data are sampled in time approximately every three hours. Since each spacecraft is at a slightly different distance from the Sun, the intensity received by each pixel was normalized to correspond to the intensity one astronomical unit from the Sun using the inverse-square law. The flux was also adjusted for the fact that each pixel captures a different fraction of the light due to their different angular size for each spacecraft. The image from each spacecraft is then reprojected using the World Coordinate System (WCS) routines of the SolarSoft library. Masks were made to smooth the transition where datasets overlap. There are a few gaps in the data, especially near the poles of the Sun, that are filled using data from the previous time step.
Note: This sequence is suitable for animation and visualization purposes but NOT for scientific analysis.
IMPORTANT NOTE: These images are for visualization purposes only. They are not suitable for scientific analysis.
This visualization was created in support of the Science On a Sphere film called "LARGEST" which is about Jupiter. The visualziation was choreographed to fit into "LARGEST" as a layer that is intended to be composited with other layers. In this case, mulitple layers are provided to make the it appear as if a sphere were filling up with Earths. These frames are in cylindrical equidistant projection and are intended to be viewed wrapped to a sphere. A sample composite of the layers is provided to show how the shot might be composed from the source layers.
This sequence shows the daily global sea ice over both the Arctic and Antarctic on a Cartesian grid from June 21, 2002 through December 31, 2008 at a frame rate of four frames per day. On days when data is not available, the prior or following day's data is used. Periods when data was absent for several consecutive days include: 2002/07/29 through 2002/08/08, 2002/09/11 through 2002/09/20, and 2003/10/29 through 2003/11/03.
Here, markers represent random locations where glaciers are found. Markers are stretched as required in latitude so that all markers appear circular when projected on the sphere. The markers begin as large and semi-transparent buttons, and change color, size and opacity over a period of 12 frames.
This series shows the daily global sea ice over both the Arctic and Antarctic from June 21, 2002 through September 22, 2008. Global data from the AMSR-E instrument on the Aqua satellite is shown on a Cartesian grid. The sea ice extent is derived from the daily AMSR-E 12.5 km sea ice concentration where the ice concentration is above 15%.
These animations of the components of the water cycle were created for the Science On a Sphere production "Loop" using data from the GEOS-5 atmospheric model on the cubed-sphere, run at 14-km global resolution for 25-days. Variables animated here include hourly clouds, precipitation, evaporation and water vapor. For more information on GEOS-5 see https://gmao.gsfc.nasa.gov/systems/geos5.
Some of these visualizations are an orthographic view of the data used in Components of the Water Cycle.
This animation shows one of the major regions where this pumping occurs, the North Atlantic Ocean around Greenland, Iceland, and the North Sea. The surface ocean current brings new water to this region from the South Atlantic via the Gulf Stream and the water returns to the South Atlantic via the North Atlantic Deep Water current. The continual influx of warm water into the North Atlantic polar ocean keeps the regions around Iceland and southern Greenland generally free of sea ice year round.
The animation also shows another feature of the global ocean circulation: the Antarctic Circumpolar Current. The region around latitude 60 south is the only part of the Earth where the ocean can flow all the way around the world with no obstruction by land. As a result, both the surface and deep waters flow from west to east around Antarctica. This circumpolar motion links the world's oceans and allows the deep water circulation from the Atlantic to rise in the Indian and Pacific Oceans, thereby closing the surface circulation with the northward flow in the Atlantic.
The flows in this visualization are based on current theories of the thermohaline circulation rather than actual data or computational model runs. The thermohaline circulation is a very slow moving current that can be difficult to distinguish from general ocean circulation. Therefore, it is difficult to measure and simulate.
This visualization was produced for the Science On a Sphere production "Loop". It is intended to be over-layed on a world map background. Below are 3 sets of 4 sequences. The first set of 4 sequences are all composited over a world map background with a limited number of frames that make them loopable (with a very slight jump at the point where the looping happens). This is primarily provided for real-time displays such as hyperwall systems. The 4 sequences are: all depth layers combined, shallow depths, middle depths, and deep depths.
The second set is the same as the first set except that the layers are not composited over the background and instead include and alpha channel. The third layer is actually the frames that were used in the film "Loop" and consist of a large number of continuous, seamless frames. Each sequence is as before, all layers, shallow, middle, and deep layers all with alpha channels.
The depth layers nominally correspond to the following ranges below sea level: shallow (0m - 600m), middle (1875m - 2500m), and deep (3000m - 4000m). These depths do vary with bathymetry. So, in areas where the sea floor is not very deep, these depths are scaled so that the flows do not interesct the sea floor or each other.
In the polar latitudes the ocean loses heat to the atmosphere. Near the equator ocean water warms, and because it is less dense, it remains close to the surface. Cast away from the planet's equator by the winds and Earth's rotation, warm equatorial waters travel on or near the surface of the globe outward toward high latitudes. But as water loses heat to the increasingly cold atmosphere far away from the equator it sinks and pushes other water out of the way. Endlessly, this pump known as Meridional Overturning Circulation, circulates water and heat around the globe. Considering that the ocean stores exponentially more heat than the atmosphere and the fact that they're always in direct contact with each other, there's a strong relationship between oceanic heat and atmospheric circulation.
Since the year 2000, the rate of absorbed solar radiation in the Arctic in June, July and August has increased by five percent, said Norman Loeb, of NASA’s Langley Research Center, Hampton, Virginia. The measurement is made by NASA’s Clouds and the Earth’s Radiant Energy System (CERES) instruments, which fly on multiple satellites.
While a five percent increase may not seem like much, consider that the rate globally has remained essentially flat during that same time. No other region on Earth shows a trend of potential long-term change.
When averaged over the entire Arctic Ocean, the increase in the rate of absorbed solar radiation is about 10 Watts per square meter. This is equivalent to an extra 10-watt light bulb shining continuously over every 10.76 square feet of Arctic Ocean for the entire summer.
As a region, the Arctic is showing more dramatic signs of climate change than any other spot on the planet. These include a warming of air temperatures at a rate two to three times greater than the rest of the planet and the loss of September sea ice extent at a rate of 13 percent per decade.
CERES instruments fly on the Terra, Aqua and Suomi-NPP satellites, and one is scheduled to fly on the next orbiter of the Joint Polar Satellite System, a NASA-NOAA effort. The Terra satellite launched Dec. 18, 1999, and CERES first started collecting Arctic data in 2000 so 2015 will mark 15 continuous years of CERES measurements over the Arctic.
The instruments include three radiometers – one measuring solar radiation reflected by Earth (shortwave), one measuring thermal infrared radiation emitted by Earth (longwave), and one measuring all outgoing radiation, whether emitted or reflected.
For more information on the project, please visit http://ceres.larc.nasa.gov.