SDO: Solar Events

Content Contact:

2023

  • Strong Solar Erupts from Sun on January 10, 2023
    2023.01.12
    The Sun emitted a strong solar flare, peaking at 5:47 p.m. EDT on Jan. 10, 2023. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured an image of the event. Solar flares are powerful bursts of energy. Flares and solar eruptions can impact radio communications, electric power grids, navigation signals, and pose risks to spacecraft and astronauts. This flare is classified as an X1.0 flare. X-class denotes the most intense flares, while the number provides more information about its strength. To see how such space weather may affect Earth, please visit NOAA’s Space Weather Prediction Center https://spaceweather.gov/, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth.
  • Sun Emits X1.9 Flare on January 9, 2023
    2023.01.11
    The Sun emitted a strong solar flare, peaking at 1:50 p.m. EST on Jan. 9, 2023. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured imagery of the event. Solar flares are powerful bursts of energy. Flares and solar eruptions can impact radio communications, electric power grids, navigation signals, and pose risks to spacecraft and astronauts. This flare is classified as an X1.9 flare. X-class denotes the most intense flares, while the number provides more information about its strength.
  • Sun Emits X1.2 Flare on January 5, 2023
    2023.01.06
    The Sun emitted a strong solar flare, peaking at 7:57 p.m. EDT on Jan. 5, 2023. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured imagery of the event. Solar flares are powerful bursts of energy. Flares and solar eruptions can impact radio communications, electric power grids, navigation signals, and pose risks to spacecraft and astronauts. This flare is classified as an X1.2 flare. X-class denotes the most intense flares, while the number provides more information about its strength.
  • A Smiling Sun
    2023.01.06
    Satellite imagery from NASA's Solar Dynamics Observatory (SDO) shows the Sun in ultraviolet light colorized in light brown. Seen in ultraviolet light, the dark patches on the Sun are known as coronal holes and are regions where fast solar wind gushes out into space.

2022

  • 133 Days on the Sun
    2023.01.05
    This video chronicles solar activity from August 12 to December 22, 2022, as captured by NASA’s Solar Dynamics Observatory, or SDO . From its orbit in space around Earth, SDO has steadily imaged the Sun in 4K x 4K resolution for nearly 13 years. This information has enabled countless new discoveries about the workings of our closest star and how it influences the solar system. With a triad of instruments, SDO captures an image of the Sun every 0.75 seconds. The Atmospheric Imaging Assembly (AIA) instrument alone captures images every 12 seconds at 10 different wavelengths of light. This 133-day time lapse showcases photos taken at a wavelength of 17.1 nanometers, which is an extreme- ultraviolet wavelength that shows the Sun’s outermost atmospheric layer: the corona. Compiling images taken 108 seconds apart, the movie condenses 133 days, or about four months, of solar observations into 59 minutes. The video shows bright active regions passing across the face of the Sun as it rotates. The Sun rotates approximately once every 27 days. The loops extending above the bright regions are magnetic fields that have trapped hot, glowing plasma. These bright regions are also the source of solar flares, which appear as bright flashes as magnetic fields snap together in a process called magnetic reconnection. While SDO has kept an unblinking eye pointed toward the Sun, there have been a few moments it missed. Some of the dark frames in the video are caused by Earth or the Moon eclipsing SDO as they pass between the spacecraft and the Sun. Other blackouts are caused by instrumentation being down or data errors. SDO transmits 1.4 terabytes of data to the ground every day. The images where the Sun is off-center were observed when SDO was calibrating its instruments. SDO and other NASA missions will continue to watch our Sun in the years to come, providing further insights about our place in space and information to keep our astronauts and assets safe. The music is a continuous mix from Lars Leonhard’s “Geometric Shapes” album, courtesy of the artist.
  • A Small (M5) but Complex flare from Active Region 13141
    2022.11.25
    Solar Dynamics Observatory (SDO) operates in a geosynchronous orbit around Earth to obtain a continuous view of the Sun. The particular instrument in this visualization records imagery in the ultraviolet portion of the spectrum at wavelengths normally absorbed by Earth's atmosphere - so we need to observe them from space. Here, Active Region 13141 (upper left of solar disk) erupts with a class M5.2 solar flare (more visible in the 304 angstrom image) and a thin stream of plasma.

    What is the PSF (Point Spread-Function)?

    Many telescopes, especially reflecting telescopes such as the ones used on SDO (Wikipedia), have internal structures that support various optical components. These components can result in incoming light being scattered to other parts of the image. This can appear in the image as a faint haze, brightening dark areas and dimming bright areas. The point-spread function (Wikipedia) is a measure of how light that would normally be received by a single camera pixel, gets scattered onto other pixels. This is often seen as the "spikes" seen in images of bright stars. For SDO, it manifests as a double-X shape centered over a bright flare (see Sun Emits Third Solar Flare in Two Days). The effect of this scattered light can be computed, and removed, by a process called deconvolution (Wikipedia). This is often a very compute-intensive process which can be sped up by using a computers graphics-processing unit (GPU) for the computation.
  • Sun Releases X1.0 Flare on October 2, 2022
    2022.10.02
    The Sun emitted a strong solar flare, peaking at 4:25 p.m. EDT on Oct. 2, 2022. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured imagery of the event. Solar flares are powerful bursts of energy. Flares and solar eruptions can impact radio communications, electric power grids, navigation signals, and pose risks to spacecraft and astronauts. This flare is classified as an X1 flare. X-class denotes the most intense flares, while the number provides more information about its strength.To see how such space weather may affect Earth, please visit NOAA’s Space Weather Prediction Center https://spaceweather.gov/, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth.
  • Solar X-Flare - October 2, 2022 (X1.0 class)
    2022.10.21
    Solar Dynamics Observatory (SDO) operates in a geosynchronous orbit around Earth to obtain a continuous view of the Sun. The particular instrument in this visualization records imagery in the ultraviolet portion of the spectrum at wavelengths normally absorbed by Earth's atmosphere - so we need to observe them from space. Here we have multi-wavelength views of an X1.0 class flare from early October 2022 (upper right of image). Solar flares are classified by the amount of energy released (Solar Flares: What Does It Take to Be X-Class?). Several long filaments or prominences (the dark ribbons) meander across the lower hemisphere.

    What is the PSF (Point Spread-Function)?

    Many telescopes, especially reflecting telescopes such as the ones used on SDO (Wikipedia), have internal structures that support various optical components. These components can result in incoming light being scattered to other parts of the image. This can appear in the image as a faint haze, brightening dark areas and dimming bright areas. The point-spread function (Wikipedia) is a measure of how light that would normally be received by a single camera pixel, gets scattered onto other pixels. This is often seen as the "spikes" seen in images of bright stars. For SDO, it manifests as a double-X shape centered over a bright flare (see Sun Emits Third Solar Flare in Two Days). The effect of this scattered light can be computed, and removed, by a process called deconvolution (Wikipedia). This is often a very compute-intensive process which can be sped up by using a computers graphics-processing unit (GPU) for the computation.
  • A Week Filled with Flares, August 2022
    2022.09.01
    During the week of Friday, August 12, to Thursday, August 18, 2022 the Sun was particularly busy. Several bright active regions were present, and starting on the 15th, they were responsible for 11 M-class flares. M-class flares are one level below X-class, the highest-energy designation. This imagery is all captured by the Solar Dynamics Observatory in the 171-angstrom wavelength of extreme-ultraviolet light. This wavelength is particularly good at showing loop structures in the Sun's corona, or atmosphere. At times, the image of the Sun disappears from view. SDO is in a geosynchronous orbit and occasionally Earth gets in between SDO and the Sun, blocking the view. Careful observation will reveal a fuzzy edge to the blackness that travels across the solar disk. This is Earth's atmosphere.
  • Sun Produces Sparkling Flare on May 19, 2022
    2022.05.26
    On May 19, 2022 the Sun emitted a magnitude M5.6 flare that peaked at 3:19 EDT. This flare was unusual in that it was not a single, bright burst from one location, but a series of smaller flashes from all over a bright active region. The Solar Dynamics Observatory captured the event in extreme ultraviolet light which reveals the delicate structure of the Sun's lower atmosphere, called the corona. The sparkling flares are followed by brilliant loops of hot plasma, which "sticks" to the Sun's magnetic fields.
  • A Peek from SDO: An Eruption on the Solar Limb
    2022.08.19
    Solar Dynamics Observatory (SDO) operates in a geosynchronous orbit around Earth to obtain a continuous view of the Sun. The particular instrument in this visualization records imagery in the ultraviolet portion of the spectrum at wavelengths normally absorbed by Earth's atmosphere - so we need to observe them from space. A large eruption occurs off the limb of the Sun (lower right) in this image sequence from May 2022.
  • Solar X1.5 flare - May 10, 2022
    2022.08.19
    Solar Dynamics Observatory (SDO) operates in a geosynchronous orbit around Earth to obtain a continuous view of the Sun. The particular instrument in this visualization records imagery in the ultraviolet portion of the spectrum at wavelengths normally absorbed by Earth's atmosphere - so we need to observe them from space. This imagery is focused on an X1.5 flare on May 10, 2022.
  • Sun Emits X1.5 Flare on May 10, 2022
    2022.05.21
    The Sun emitted a strong solar flare on Tuesday, May 10, 2022, peaking at 9:55 a.m. EDT. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured an image of the event. Solar flares are powerful bursts of energy. Flares and solar eruptions can impact radio communications, electric power grids, navigation signals, and pose risks to spacecraft and astronauts. This flare is classified as an X-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. To see how such space weather may affect Earth, please visit NOAA’s Space Weather Prediction Center https://spaceweather.gov/, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth.
  • Solar X-flare. May 3, 2022
    2022.08.19
    Solar Dynamics Observatory (SDO) operates in a geosynchronous orbit around Earth to obtain a continuous view of the Sun. The particular instrument in this visualization records imagery in the ultraviolet portion of the spectrum at wavelengths normally absorbed by Earth's atmosphere - so we need to observe them from space. These imagery cover the time frame of an X1.1 flare (lower left).
  • Active Sun in Early May, 2022
    2022.05.06
    Solar flares are powerful bursts of energy. Flares and solar eruptions can impact radio communications, electric power grids, navigation signals, and pose risks to spacecraft and astronauts. This flare is classified as an X-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. More info on how flares are classified can be found here. To see how such space weather may affect Earth, please visit NOAA’s Space Weather Prediction Center https://spaceweather.gov/, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth.
  • Strong Solar Flare Erupts from Sun on April 30, 2022
    2022.05.02
    The Sun emitted a strong solar flare on April 30, 2022, peaking at 9:47 a.m. EDT. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured an image of the event. Solar flares are powerful bursts of energy. Flares and solar eruptions can impact radio communications, electric power grids, navigation signals, and pose risks to spacecraft and astronauts. This flare is classified as an X-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. More info on how flares are classified can be found here. To see how such space weather may affect Earth, please visit NOAA’s Space Weather Prediction Center https://spaceweather.gov/, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth.
  • Solar X-Flare - April 20, 2022 (X2.2 class)
    2022.09.22
    Solar Dynamics Observatory (SDO) operates in a geosynchronous orbit around Earth to obtain a continuous view of the Sun. The particular instrument in this visualization records imagery in the ultraviolet portion of the spectrum at wavelengths normally absorbed by Earth's atmosphere - so we need to observe them from space. An X2.2 class solar flare erupts on the southern limb of the Sun in the early hours of April 20, 2022. This flare is very close to the lower right of the solar limb and most visible in the 131 Angstrom filter (teal color table). Solar flares are classified by the amount of energy released (Solar Flares: What Does It Take to Be X-Class?)

    What is the PSF (Point Spread-Function)?

    Many telescopes, especially reflecting telescopes such as the ones used on SDO (Wikipedia), have internal structures that support various optical components. These components can result in incoming light being scattered to other parts of the image. This can appear in the image as a faint haze, brightening dark areas and dimming bright areas. The point-spread function (Wikipedia) is a measure of how light that would normally be received by a single camera pixel, gets scattered onto other pixels. This is often seen as the "spikes" seen in images of bright stars. For SDO, it manifests as a double-X shape centered over a bright flare (see Sun Emits Third Solar Flare in Two Days). The effect of this scattered light can be computed, and removed, by a process called deconvolution (Wikipedia). This is often a very compute-intensive process which can be sped up by using a computers graphics-processing unit (GPU) for the computation.
  • A Small (M5) Flare from Active Region 13078
    2022.08.25
    Solar Dynamics Observatory (SDO) operates in a geosynchronous orbit around Earth to obtain a continuous view of the Sun. The particular instrument in this visualization records imagery in the ultraviolet portion of the spectrum at wavelengths normally absorbed by Earth's atmosphere - so we need to observe them from space. These movies were generated around a small M5 class solar flare that occurred on April 17, 2022 near the center of the lower hemisphere

    What is the PSF (Point Spread-Function)?

    Many telescopes, especially reflecting telescopes such as the ones used on SDO (Wikipedia), have internal structures that support various optical components. These components can result in incoming light being scattered to other parts of the image. This can appear in the image as a faint haze, brightening dark areas and dimming bright areas. The point-spread function (Wikipedia) is a measure of how light that would normally be received by a single camera pixel, gets scattered onto other pixels. This is often seen as the "spikes" seen in images of bright stars. For SDO, it manifests as a double-X shape centered over a bright flare (see Sun Emits Third Solar Flare in Two Days). The effect of this scattered light can be computed, and removed, by a process called deconvolution (Wikipedia). This is often a very compute-intensive process which can be sped up by using a computers graphics-processing unit (GPU) for the computation.
  • Solar X-flare - April 17, 2022. Active Region 12994, X1.1
    2022.08.19
    Solar Dynamics Observatory (SDO) operates in a geosynchronous orbit around Earth to obtain a continuous view of the Sun. The particular instrument in this visualization records imagery in the ultraviolet portion of the spectrum at wavelengths normally absorbed by Earth's atmosphere - so we need to observe them from space. These movies were generated around an X1.1 class solar flare that occurred on April 17, 2022.
  • Mid-level Solar Flare Erupts from Sun on March 31, 2022
    2022.04.01
    The Sun emitted a mid-level solar flare on March 31, 2022, peaking at 2:35 p.m. EDT. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured imagery of the event. Solar flares are powerful bursts of energy. Flares and solar eruptions can impact radio communications, electric power grids, navigation signals, and pose risks to spacecraft and astronauts. This flare is classified as an M-Class flare. M-class flares are a tenth the size of the most intense flares, the X-class flares. The number provides more information about its strength. An M2 is twice as intense as an M1, an M3 is three times as intense, etc. More info on how flares are classified can be found here. To see how such space weather may affect Earth, please visit NOAA’s Space Weather Prediction Center https://spaceweather.gov/, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth.
  • Significant Solar Flare Erupts From Sun on March 30, 2022
    2022.03.30
    The Sun emitted a significant solar flare on March 30, 2022, peaking at 1:35 p.m. EST. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured imagery of the event. Solar flares are powerful bursts of energy. Flares and solar eruptions can impact radio communications, electric power grids, navigation signals, and pose risks to spacecraft and astronauts. This flare is classified as an X-Class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. More info on how flares are classified can be found here. To see how such space weather may affect Earth, please visit NOAA’s Space Weather Prediction Center https://spaceweather.gov/, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth.
  • AR 12938 - Slow Building Active Region on Left Limb
    2022.08.19
    Solar Dynamics Observatory (SDO) operates in a geosynchronous orbit around Earth to obtain a continuous view of the Sun. The particular instrument in this visualization records imagery in the ultraviolet portion of the spectrum at wavelengths normally absorbed by Earth's atmosphere - so we need to observe them from space. This image sequence follows the slow build of loops over an active region (left edge of the solar limb). The moon briefly passes between the Sun and SDO (starting around 07:07TAI to 07:51TAI).
  • Mid-Level Flare Erupts From Sun
    2022.01.21
    The Sun emitted a mid-level solar flare on Jan. 20, 2022, peaking at 1:01 a.m. EST. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured an image of the event. Solar flares are powerful bursts of energy. Flares and solar eruptions can impact radio communications, electric power grids, navigation signals, and pose risks to spacecraft and astronauts. This flare is classified as a M5.5 class flare. More info on how flares are classified here. To see how such space weather may affect Earth, please visit NOAA’s Space Weather Prediction Center https://spaceweather.gov/, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth.

2021

  • Active October Sun Emits X-class Flare
    2021.10.28
    The Sun emitted a significant solar flare peaking at 11:35 a.m. EDT on Oct. 28, 2021. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth’s atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how such space weather may affect Earth, please visit NOAA's Space Weather Prediction Center http://spaceweather.gov/, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. NASA works as the research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth. This flare is classified as an X1.0-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. Flares that are classified X10 or stronger are considered unusually intense. Earlier in the week, from late-afternoon on October 25th through mid-morning on the 26th, a different active region on the Sun gave a show of small flares and eruptions of plasma.

2020

  • Solar Activity Continues to Rise with 'Anemone' Eruption
    2020.12.03
    This imagery captured by NASA’s Solar Dynamics Observatory shows a solar flare and a subsequent eruption of solar material that occurred over the left limb of the Sun on November 29, 2020. From its foot point over the limb, some of the light and energy was blocked from reaching Earth – a little like seeing light from a lightbulb with the bottom half covered up. Also visible in the imagery is an eruption of solar material that achieved escape velocity and moved out into space as a giant cloud of gas and magnetic fields known as a coronal mass ejection, or CME. A third, but invisible, feature of such eruptive events also blew off the Sun: a swarm of fast-moving solar energetic particles. Such particles are guided by the magnetic fields streaming out from the Sun, which, due to the Sun’s constant rotation, point backwards in a big spiral much the way water comes out of a spinning sprinkler. The solar energetic particles, therefore, emerging as they did from a part of the Sun not yet completely rotated into our view, traveled along that magnetic spiral away from Earth toward the other side of the Sun. While the solar material didn’t head toward Earth, it did pass by some spacecraft: NASA’s Parker Solar Probe, NASA’s STEREO and ESA/NASA’s Solar Orbiter. Equipped to measure magnetic fields and the particles that pass over them, we may be able to study fast-moving solar energetic particles in the observations once they are downloaded. These sun-watching missions are all part of a larger heliophysics fleet that help us understand both what causes such eruptions on the Sun -- as well as how solar activity affects interplanetary space, including near Earth, where they have the potential to affect astronauts and satellites.
  • Small Flare Seen on the Sun, August 16, 2020
    2020.08.20
    Late on August 16, 2020, the Sun released a burst of light and energy known as a solar flare. This B1-class solar flare – the second smallest class of flare – peaked at 1:26p.m. EDT. NASA’s Solar Dynamics Observatory observes the Aug. 16, 2020, B-class flare at 131, 171, and 193 angstroms. Credit: NASA/SDO Solar flares, which are abrupt outbursts of energy and light on the solar surface, are often accompanied by CMEs. B-class flares – or “background” flares – were originally the lowest class of flare before lower level A-class flares were observed. B-class flares are relatively common; there have been at least three B-class flares in the last week. The recent activity occurred in an otherwise quiet area of the Sun, providing an example of activity that did not originate from a sunspot – the darkened, magnetically active patches on the solar surface that often spawn flares and CMEs. The flare was first seen by NASA’s Solar Dynamics Observatory, which has kept a constant eye on the Sun for over a decade.

2019

  • Mercury Transit 2019 - 4K
    2019.11.11
    Starting around approximately 1200 - 1808 UTC (7:00 am - 1:38pm ET) November 11, 2019, NASA's Solar Dynamics Observatory watched as Mercury move across the Sun. The Solar Dynamics Observatory views the Sun in a variety of wavelengths of light in the extreme ultraviolet.

2017

  • April 2017 Solar Flare Trio
    2017.04.03
    The sun emitted a trio of mid-level solar flares on April 2-3, 2017. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured images of the three events.
  • Two Weeks in the Life of a Sunspot
    2017.08.04
    On July 5, 2017, NASA’s Solar Dynamics Observatory watched AR26665, an active region — an area of intense and complex magnetic fields — rotate into view on the sun. The satellite continued to track the region as it grew and eventually rotated across the sun and out of view on July 17.
  • SDO's View of the August 21 Solar Eclipse
    2017.08.22
    NASA's Solar Dynamics Observatory was also treated to a view of the Moon blocking the Sun. Because of its location 3,000 miles above the Earth, SDO sees several lunar transits each year. An eclipse on the ground, however, does not guarantee that SDO will see anything out of the ordinary. In this case, SDO was lucky and got treated to the Moon briefly passing in front of its non-stop view of the Sun at the same time that the Moon’s shadow passed over the eastern United States. SDO only saw 14% of the Sun blocked by the Moon, whereas most US residents saw 60% or more. Launched on Feb. 11, 2010, the Solar Dynamics Observatory, or SDO, is the most advanced spacecraft ever designed to study the Sun. It has examined the Sun's atmosphere, magnetic field and also provided a better understanding of the role the Sun plays in Earth's atmospheric chemistry and climate. SDO captures images of the Sun in 10 different wavelengths every 12 seconds at resolution 8 times better than HD. Each wavelength helps highlight a different temperature of solar material. Different temperatures can, in turn, show specific structures on the sun such as solar flares, which are gigantic explosions of light and x-rays, or coronal loops, which are stream of solar material traveling up and down looping magnetic field lines. The videos and images displayed here are constructed from several wavelengths of extreme ultraviolet light and a portion of the visible spectrum. The red colored Sun is the 304 ångstrom ultraviolet, the golden colored Sun is 171 ångstrom, and the orange Sun is filtered visible light. 304 and 171 show the atmosphere of the Sun, which does not appear in the visible part of the spectrum. 171 highlights material at about 1 million degrees Fahrenheit (600,000 degrees Celsius.)
  • The X8.2 Flare of September 2017, as Seen by SDO
    2019.05.01
    Between September 9-10 of 2017, the Sun launched a series of three coronal mass ejections (CMEs), culminating with an X8.2 flare from the eastern limb, as the active region was rotating away from the Earth. These events rippled across the solar system, and were detected by multiple NASA missions. A slow (500 km/s) CME was launched at 23:46UT on September 9. A second faster CME (1000km/s) was launched on September 10 at 02:16UT and the fastest CME (2600 km/s) was launched at 16:54 UT. The faster CMEs would eventually catch up with the slower CME and merge into a single CME moving through the solar system. These image sequences from SDO are selected at a higher time resolution (12 seconds between frames) compared to some of the older content related to these events.
  • September Flares
    2017.09.06
    Active region 2673 emitted a series of flares in early September, 2017, including: --an M5.5 at 4:33 p.m. EDT on Sept. 4, 2017 --an X2.2 at 5:10 a.m. EDT on Sept. 6, 2017 --an X9.3 at 8:02 a.m. EDT on Sept. 6, 2017 --an M7.3 at 6:15 a.m. EDT on Sept. 7, 2017 --an X1.3 at 10:36 a.m. EDT on Sept. 7, 2017 --an M8.1 at 3:49 a.m. EDT on Sept. 8, 2017 --an X8.2 at 12:47 p.m. EDT on Sept. 10, 2017 NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured images of the events. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at http://spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. The X9.3 flare was the largest flare so far in the current solar cycle, the approximately 11-year-cycle during which the sun’s activity waxes and wanes. The current solar cycle began in December 2008, and is now decreasing in intensity and heading toward solar minimum. This is a phase when such eruptions on the sun are increasingly rare, but history has shown that they can nonetheless be intense.
    September 10, X8.2

    September 8, M8.1

    September 7, X1.3

    September 6, X9.3 and X2.2

    September 4, M5.5

2016

  • NASA’s SDO Captures Stunning 4K View of April 17 Solar Flare
    2016.04.26
    On April 17, 2016, an active region on the sun’s right side released a mid-level solar flare, captured here by NASA’s Solar Dynamics Observatory. This solar flare caused moderate radio blackouts, according to NOAA’s Space Weather Prediction Center. Scientists study active regions – which are areas of intense magnetism – to better understand why they sometimes erupt with such flares. This video was captured in several wavelengths of extreme ultraviolet light, a type of light that is typically invisible to our eyes, but is color-coded in SDO images for easy viewing.
  • 2016 Mercury Transit Timelapse
    2016.05.09
    Around 13 times per century, Mercury passes between Earth and the sun in a rare astronomical event known as a planetary transit. Mercury orbits in a plane that is tilted from Earth’s orbit, moving above or below our line of sight to the sun.

    The 2016 Mercury transit occurred on May 9th, between about 7:12 a.m. and 2:42 p.m. EDT.

    The images in this video are from NASA's Solar Dynamics Observatory, or SDO.

    Transits provide a great opportunity to study the way planets and stars move in space– information that has been used throughout the ages to better understand the solar system and which still helps scientists today calibrate their instruments.

  • SDO Sees Trio of Mid-Level Flares
    2016.07.25
    The sun emitted three mid-level solar flares on July 22-23, 2016, the strongest peaking at 1:16 am EDT on July 23. The sun is currently in a period of low activity, moving toward what's called solar minimum when there are few to no solar eruptions – so these flares were the first large ones observed since April. They are categorized as mid-strength flares, substantially less intense than the most powerful solar flares.

2015

  • Sun Emits an X2.2 Flare on March 11, 2015
    2015.03.11
    The sun emitted a significant solar flare, peaking at 12:22 p.m. EDT on March 11, 2015. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel.    This flare is classified as an X2.2-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc.
  • NASA's SDO Observes a Cinco de Mayo Solar Flare
    2015.05.06
    The sun emitted a significant solar flare, peaking at 6:11 pm EDT on May 5, 2015. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel.    This flare is classified as an X2.7-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc.
  • Space Weather Imagery of June 22 - 23, 2015 Events
    2015.06.23
    The sun emitted a CME and mid-level solar flare, peaking at 2:23 p.m. EDT, on June 22, 2015. Again on June 25, 2015, a mid-level solar flare peaked at 4:16 a.m. EDT. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at http://spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This first flare is classified as an M6.6 flare and the second was M7.9. M-class flares are a tenth the size of the most intense flares, the X-class flares. The number provides more information about its strength. An M2 is twice as intense as an M1, an M3 is three times as intense, etc.
  • Arching Eruption
    2015.06.30
    NASA’s Solar Dynamics Observatory caught this image of an eruption on the side of the sun over June 18, 2015. The eruption ultimately escaped the sun, growing into a substantial coronal mass ejection, or CME — a giant cloud of solar material traveling through space. This imagery is shown in the 304 angstrom wavelength of extreme ultraviolet light, a wavelength that highlights material in the low parts of the sun’s atmosphere and that is typically colorized in red. The video clip covers about four hours of the event.
  • SDO Transit - September 2015
    2015.09.14
    On Sept. 13, 2015, as NASA’s Solar Dynamics Observatory, or SDO, kept up its constant watch on the sun, its view was photobombed not once, but twice. Just as the moon came into SDO’s field of view on a path to cross the sun, Earth entered the picture, blocking SDO’s view completely. When SDO's orbit finally emerged from behind Earth, the moon was just completing its journey across the sun’s face.

    Though SDO sees dozens of Earth eclipses and several lunar transits each year, this is the first time ever that the two have coincided.

    SDO’s orbit usually gives us unobstructed views of the sun, but Earth’s revolution around the sun means that SDO’s orbit passes behind Earth twice each year, for two to three weeks at a time. During these phases, Earth blocks SDO’s view of the sun for anywhere from a few minutes to over an hour once each day.

    Earth’s outline looks fuzzy, while the moon’s is crystal-clear. This is because—while the planet itself completely blocks the sun's light—Earth’s atmosphere is an incomplete barrier, blocking different amounts of light at different altitudes. However, the moon has no atmosphere, so during the transit we can see the crisp edges of the moon's horizon.

2014

  • Sun unleashes first X-class flare of 2014
    2014.01.07
    The sun emitted a significant solar flare peaking at 1:32 p.m. EST on Jan.7, 2014. This is the first significant flare of 2014, and follows on the heels of mid-level flare earlier in the day. Each flare was centered over a different area of a large sunspot group currently situated at the center of the sun, about half way through its 14-day journey across the front of the disk along with the rotation of the sun.

    This flare is classified as an X1.2-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc.

  • SDO Lunar Transit, Prominence Eruption, and M-Class Flare
    2014.01.30
    On Jan 30, 2014, beginning at 8:31 a.m EST, the moon moved between NASA’s Solar Dynamics Observatory, or SDO, and the sun, giving the observatory a view of a partial solar eclipse from space. Such a lunar transit happens two to three times each year. This one lasted two and one half hours, which is the longest ever recorded. When the next one will occur is as of yet unknown due to planned adjustments in SDO's orbit.

    Note in the pictures how crisp the horizon is on the moon, a reflection of the fact that the moon has no atmosphere around it to distort the light from the sun.

    The sun emitted a mid-level solar flare, peaking at 11:11 a.m. EST on Jan. 30, 2014. Images of the flare were captured by NASA's Solar Dynamics Observatory, or SDO, shortly after the observatory witnessed a lunar transit. The black disk of the moon can be seen in the lower right of the images.

  • NASA's SDO Provides Images of Significant Solar Flare
    2014.02.25
    The sun emitted a significant solar flare, peaking at 7:49 p.m. EST on Feb. 24, 2014. NASA's Solar Dynamics Observatory, which keeps a constant watch on the sun, captured images of the event.

    This flare is classified as an X4.9-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc.

  • Giant Sunspot Makes Third Trip Across the Sun
    2014.02.28
    A giant sunspot – a magnetically strong and complex region on the sun's surface – has just appeared over the sun's horizon. This is the third trip for this region across the face of the sun, which takes approximately 27 days to make a complete rotation.

    Scientists track sunspots that are part of active regions, which often produce large explosions on the sun such as solar flares and coronal mass ejections, or CMEs. Each time an active region appears it is assigned a number. Active regions that have survived their trip around the back of the sun and reappear are assigned a new number – a convention left over from when we had no telescopes observing the far side of the sun and so could not be sure that the new sunspot was indeed the same as the old one. This active region is currently labeled AR11990. Last time around it was labeled AR11967and its first time it was AR11944.

    During its three trips thus far, this region has produced two significant solar flares, labeled as the strongest kind of flare, an X-class. It has also produced numerous mid-level and smaller flares. While many sunspots do not last more than a couple of weeks, there have been sunspots known to be stable for many months at a time.

    Studying what causes active regions to appear and disappear over time, as well as how long they remain stable, is key to understanding the origins of space weather that can impact Earth’s technological infrastructure.

  • Graceful Eruption
    2014.04.04
    On April 2, 2014, the sun emitted a mid-level solar flare, peaking at 10:05 a.m. EDT, and NASA's Solar Dynamics Observatory captured imagery of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. This video from NASA's Solar Dynamics Observatory shows the flare in a blend of two wavelengths of extreme ultraviolet light: 304 angstroms and 171 angstroms, colorized in red and yellow, respectively.
  • X-class Flare Erupts from Sun on April 24
    2014.04.25
    The sun emitted a significant solar flare, peaking at 8:27 p.m. EDT on April 24, 2014. Images of the flare were captured by NASA's Solar Dynamics Observatory. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X1.4 flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc.
  • Sun Emits 3 X-class Flares in 2 Days
    2014.06.10
    The sun emitted a significant solar flare, peaking at 7:42 a.m. EDT on June 10, 2014. NASA's Solar Dynamics Observatory – which typically observes the entire sun 24 hours a day — captured images of the flare. This flare is classified as an X2.2 flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. About one hour later, the sun released a second X-class flare, peaking at 8:52 a.m. EDT on June 10, 2014. This is classified as an X1.5 flare.
  • Firework Flare
    2014.07.09
    This movie from NASA’s SDO shows a solar flare — the bright light on the left side of the sun — on July 8, 2014. An eruption of solar material can also be seen arcing up and away. After it left the sun, this became a coronal mass ejection, a giant cloud of solar material, headed toward Mars.
  • Late Summer M5 Solar Flare - August, 24, 2014
    2014.08.25
    On Aug. 24, 2014, the sun emitted a mid-level solar flare, peaking at 8:16 a.m. EDT. NASA's Solar Dynamics Observatory captured images of the flare, which erupted on the left side of the sun. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at http://spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an M5 flare. M-class flares are ten times less powerful than the most intense flares, called X-class flares.

    Visit the SDO site.

    All Video and Image Credit: NASA/SDO

  • September 10, 2014 X1.6 flare
    2014.09.11
    The sun emitted a significant solar flare, peaking at 1:48 p.m. EDT on Sept. 10, 2014. NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground. However — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X1.6 class flare. "X-class" denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc.
  • Sun Emits Mid-Level Flare on October 2, 2014
    2014.10.03
    The sun emitted a mid-level solar flare, peaking at 3:01 p.m. EDT on Oct. 2, 2014. NASA's Solar Dynamics Observatory, which watches the sun 24-hours a day, captured images of the flare. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an M7.3 flare. M-class flares are one-tenth as powerful as the most powerful flares, which are designated X-class flares.
  • A Big Sunspot from Solar Cycle 24
    2021.06.18
    A leisurely view in the SDO Helioseismic and Magnetic Imager (HMI) of a very large sunspot group transiting the solar disk in October of 2014. This spot was the visible light component of the active region cataloged as NOAA 12192.
  • Second Substantial Flare in Two Days
    2014.10.22
    The sun emitted a mid-level solar flare, peaking at 9:59 p.m. EDT on Oct. 21, 2014. NASA's Solar Dynamics Observatory, which is always observing the sun, captured an image of the event. The same active region previously emitted an X1.1 solar flare on Oct. 19. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an M 8.7-class flare. M-class denotes flares that are a tenth as strong as X-class flares, which are the most intense flares. The number provides more information about its strength. An M2 is twice as intense as an M1, an M3 is three times as intense, etc.
  • Giant Sunspot Continues to Erupt with Substantial Flares
    2014.10.24
    The sun emitted a significant solar flare, peaking at 5:40 p.m. EDT on Oct. 24, 2014. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured images of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X3.1-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. The flare erupted from a particularly large active region -- labeled AR 12192 -- on the sun that is the largest in 24 years. This is the fourth substantial flare from this active region since Oct. 19. The giant active region on the sun erupted on Oct. 26, 2014, with it's sixth substantial flare since Oct.19. This flare was classified as an X2-class flare and it peaked at 6:56 am EDT. Continuing a week's worth of substantial flares beginning on Oct.19, 2014, the sun emitted two mid-level solar flares on Oct. 26 and Oct. 27. The first peaked at 8:34 pm EDT on Oct. 26, 2014, and the second peaked almost 10 hours later at 6:09 am EDT on Oct. 27. NASA's Solar Dynamics Observatory, which constantly observes the sun, captured images of both flares. A large active region on the sun erupted with another X-class flare, an X2.0, on Oct. 27, 2014 -- its fourth since Oct. 24. The flare peaked at 10:47 a.m. EDT. The sun emitted a mid-level solar flare, an M6.6-class, peaking at 11:32 pm EDT on Oct. 28, 2014
  • A Series of Flares from November Active Region 12205
    2014.11.05
    Images of the flares from the active region labeled AR 12205, which rotated over the left limb of the sun on Nov. 3, 2014. An active region on the sun emitted a mid-level solar flare, peaking at 4:47 a.m. EST on Nov. 5, 2014. This was the second mid-level flare from the same active region. The third flare was an X1.6, emitted on Nov. 7, 2014, peaking at 12:26 pm EST. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an M7.9-class flare. M-class flares are a tenth the size of the most intense flares, the X-class flares. The number provides more information about its strength. An M2 is twice as intense as an M1, an M3 is three times as intense, etc.
  • Holiday Lights on the Sun
    2014.12.22
    The sun emitted a significant solar flare, peaking at 7:24 p.m. EST on Dec. 19, 2014. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at http://spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an X1.8-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc.

2013

  • January 31, 2013 CME and Prominence Eruption
    2013.01.31
    On Jan. 31, 2013 at 2:09am EST, the sun erupted with an Earth-directed coronal mass ejection or CME. Experimental NASA research models, based on observations from the Solar Terrestrial Relations Observatory (STEREO) and ESA/NASA's Solar and Heliospheric Observatory, show that the CME left the sun at speeds of around 575 miles per second, which is a fairly typical speed for CMEs. Historically, CMEs at this speed are mild.

    Not to be confused with a solar flare, a CME is a solar phenomenon that can send solar particles into space and reach Earth one to three days later.

    Earth-directed CMEs can cause a space weather phenomenon called a geomagnetic storm, which occurs when they connect with the outside of the Earth's magnetic envelope, the magnetosphere, for an extended period of time. In the past, CME's such as this have caused auroras near the poles but didn't disrupt electrical systems on Earth or interfere with GPS or satellite-based communications systems.

  • The Sun Produces Two CMEs
    2013.02.07
    In the evening of Feb. 5, 2013, the sun erupted with two coronal mass ejections or CMEs that may glance near-Earth space. Experimental NASA research models, based on observations from the Solar Terrestrial Relations Observatory (STEREO) and ESA/NASA's Solar and Heliospheric Observatory, show that the first CME began at 7 p.m. EST and left the sun at speeds of around 750 miles per second. The second CME began at 10:36 p.m. EST and left the sun at speeds of around 350 miles per second. Historically, CMEs of this speed and direction have been benign.

    Not to be confused with a solar flare, a CME is a solar phenomenon that can send solar particles into space and reach Earth one to three days later.

    Earth-directed CMEs can cause a space weather phenomenon called a geomagnetic storm, which occurs when they connect with the outside of the Earth's magnetic envelope, the magnetosphere, for an extended period of time. In the past, CMEs at this strength have had little effect. They may cause auroras near the poles but are unlikely to disrupt electrical systems on Earth or interfere with GPS or satellite-based communications systems.

  • SDO Observes Fast-Growing Sunspot
    2013.02.22
    As magnetic fields on the sun rearrange and realign, dark spots known as sunspots can appear on its surface. Over the course of Feb. 19-20, 2013, scientists watched a giant sunspot form in under 48 hours. It has grown to over six Earth diameters across but its full extent is hard to judge since the spot lies on a sphere not a flat disk.

    The spot quickly evolved into what's called a delta region, in which the lighter areas around the sunspot, the penumbra, exhibit magnetic fields that point in the opposite direction of those fields in the center, dark area. This is a fairly unstable configuration that scientists know can lead to eruptions of radiation on the sun called solar flares.

  • The Sun Emits a Mid-level Flare and CME
    2013.04.11
    The sun emitted a mid-level flare, peaking at 3:16 a.m. EDT on April 11, 2013.

    Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. This disrupts the radio signals for as long as the flare is ongoing, anywhere from minutes to hours.

    This flare is classified as an M6.5 flare, some ten times less powerful than the strongest flares, which are labeled X-class flares. M-class flares are the weakest flares that can still cause some space weather effects near Earth. This flare produced a radio blackout that has since subsided. The blackout was categorized as an R2 on a scale between R1 and R5 on NOAA's space weather scales.

    This is the strongest flare seen so far in 2013. Increased numbers of flares are quite common at the moment, since the sun's normal 11-year activity cycle is ramping up toward solar maximum, which is expected in late 2013. Humans have tracked this solar cycle continuously since it was discovered, and it is normal for there to be many flares a day during the sun's peak activity.

  • Sun Emits Mid-Level Flare and Prominence Eruption
    2013.05.03
    The sun emitted a mid-level solar flare, peaking at 1:32 pm EDT on May 3, 2013. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. This disrupts the radio signals for as long as the flare is ongoing, and the radio blackout for this flare has already subsided.

    This flare is classified as an M5.7-class flare. M-class flares are the weakest flares that can still cause some space weather effects near Earth. Increased numbers of flares are quite common at the moment, as the sun's normal 11-year activity cycle is ramping up toward solar maximum, which is expected in late 2013.

  • NASA's Heliophysics Fleet Captures May 1, 2013 Prominence Eruption and CME
    2013.05.07
    On May 1, 2013, NASA's Solar Dynamics Observatory (SDO) watched as an active region just around the East limb (left edge) of the sun erupted with a huge cloud of solar material—a heated, charged gas called plasma. This eruption, called a coronal mass ejection, or CME, sent the plasma streaming out through the solar system. Viewing the sun in the extreme ultraviolet wavelength of 304 angstroms, SDO provided a beautiful view of the initial arc as it left the solar surface.

    Such eruptions soon leave SDO's field of view, but other satellites in NASA's Heliophysics fleet can pick them up, tracking such space weather to determine if they are headed toward Earth or spacecraft near other planets. With advance warning, many space assets can be put into safe mode and protect themselves from the effects of such particle radiation.

    In addition to the images captured by SDO, the May 1, 2013 CME was also observed by the ESA/NASA Solar and Heliospheric Observatory (SOHO). SOHO houses two overlapping coronagraphs—telescopes where the bright sun is blocked by a disk so it doesn't overpower the fainter solar atmosphere—and they both saw the CME continue outward. The LASCO C2 coronagraph shows the region out to about 2.5 million miles. The LASCO C3 coronagraph expands even farther out to around 13.5 million miles. Both of these instruments show the CME as it expands and becomes fainter on its trip away from the sun.

    NASA's Solar Terrestrial Relations Observatory (STEREO) Ahead satellite saw the eruption from a very different angle. It, along with its twin STEREO Behind, is orbiting at a similar distance as Earth. STEREO-A orbits slightly faster than Earth and STEREO-B orbits slightly slower. Currently, STEREO-A is more than two-thirds of the way to being directly behind the sun, and has a view of the far side of the sun. From this perspective, the CME came off the right side of the sun. STEREO has an extreme ultraviolet camera similar to SDO's, but it also has coronagraphs like SOHO. As a result, using its two inner coronagraphs, it was able to track the CME from the solar surface out to 6.3 million miles.

    Working together, such missions provide excellent coverage of a wide variety of solar events, a wealth of scientific data—and lots of beautiful imagery.

    Watch this video on YouTube.

  • First X-Class Solar Flares of 2013
    2013.05.13
    On May 13, 2013, the sun emitted an X2.8-class flare, peaking at 12:05 p.m. EDT. This is the the strongest X-class flare of 2013 so far, surpassing in strength the X1.7-class flare that occurred 14 hours earlier. It is the 16th X-class flare of the current solar cycle and the third-largest flare of that cycle. The second-strongest was an X5.4 event on March 7, 2012. The strongest was an X6.9 on Aug. 9, 2011.

    On May 12, 2013, the sun emitted a significant solar flare, peaking at 10 p.m. EDT. This flare is classified as an X1.7, making it the first X-class flare of 2013. The flare was also associated with another solar phenomenon, called a coronal mass ejection (CME) that can send solar material out into space. This CME was not Earth-directed.

    The May 12 flare was also associated with a coronal mass ejection, another solar phenomenon that can send billions of tons of solar particles into space, which can affect electronic systems in satellites and on the ground. Experimental NASA research models show that the CME left the sun at 745 miles per second and is not Earth-directed, however its flank may pass by the STEREO-B and Spitzer spacecraft, and their mission operators have been notified. If warranted, operators can put spacecraft into safe mode to protect the instruments from solar material. There is some particle radiation associated with this event, which is what can concern operators of interplanetary spacecraft since the particles can trip computer electronics on board.

  • Sun Emits a Solstice CME
    2013.06.28
    On June 20, 2013, at 11:24 p.m., the sun erupted with an Earth-directed coronal mass ejection or CME, a solar phenomenon that can send billions of tons of particles into space that can reach Earth one to three days later. These particles cannot travel through the atmosphere to harm humans on Earth, but they can affect electronic systems in satellites and on the ground.

    Experimental NASA research models, based on observations from NASA's Solar Terrestrial Relations Observatory and ESA/NASA's Solar and Heliospheric Observatory show that the CME left the sun at speeds of around 1350 miles per second, which is a fast speed for CMEs.

    Earth-directed CMEs can cause a space weather phenomenon called a geomagnetic storm, which occurs when they funnel energy into Earth's magnetic envelope, the magnetosphere, for an extended period of time. The CME's magnetic fields peel back the outermost layers of Earth's fields changing their very shape. Magnetic storms can degrade communication signals and cause unexpected electrical surges in power grids. They also can cause aurora. Storms are rare during solar minimum, but as the sun's activity ramps up every 11 years toward solar maximum—currently expected in late 2013—large storms occur several times per year.

    In the past, geomagnetic storms caused by CMEs of this strength and direction have usually been mild.

    In addition, the CME may pass by additional spacecraft: Messenger, STEREO B, Spitzer, and their mission operators have been notified. If warranted, operators can put spacecraft into safe mode to protect the instruments from the solar material.

  • Filament Eruption Creates 'Canyon of Fire' on the Sun
    2013.10.24
    A magnetic filament of solar material erupted on the sun in late September, breaking the quiet conditions in a spectacular fashion. The 200,000 mile long filament ripped through the sun's atmosphere, the corona, leaving behind what looks like a canyon of fire. The glowing canyon traces the channel where magnetic fields held the filament aloft before the explosion. Visualizers at NASA's Goddard Space Flight Center in Greenbelt, Md. combined two days of satellite data to create a short movie of this gigantic event on the sun.

    In reality, the sun is not made of fire, but of something called plasma: particles so hot that their electrons have boiled off, creating a charged gas that is interwoven with magnetic fields.

    These images were captured on Sept. 29-30, 2013, by NASA's Solar Dynamics Observatory, or SDO, which constantly observes the sun in a variety of wavelengths.

    Different wavelengths help capture different aspect of events in the corona. The red images shown in the movie help highlight plasma at temperatures of 90,000° F and are good for observing filaments as they form and erupt. The yellow images, showing temperatures at 1,000,000° F, are useful for observing material coursing along the sun's magnetic field lines, seen in the movie as an arcade of loops across the area of the eruption. The browner images at the beginning of the movie show material at temperatures of 1,800,000° F, and it is here where the canyon of fire imagery is most obvious. By comparing this with the other colors, one sees that the two swirling ribbons moving farther away from each other are, in fact, the footprints of the giant magnetic field loops, which are growing and expanding as the filament pulls them upward.

  • Sun Emits Third Solar Flare in Two Days
    2013.10.25
    The sun emitted a significant solar flare, peaking at 4:01 a.m. EDT on Oct. 25, 2013. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. This disrupts the radio signals for as long as the flare is ongoing, anywhere from minutes to hours.

    This flare is classified as an X1.7 class flare. "X-class" denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. In the past, X-class flares of this intensity have caused degradation or blackouts of radio communications for about an hour.

    Increased numbers of flares are quite common at the moment, since the sun's normal 11-year activity cycle is currently near solar maximum conditions. Humans have tracked this solar cycle continuously since it was discovered in 1843, and it is normal for there to be many flares a day during the sun's peak activity. The first X-class flare of the current solar cycle occurred on February 15, 2011. The largest X-class flare in this cycle was an X6.9 on August 9, 2011.

  • Sun Continues to Emit Solar Flares
    2013.10.28
    After emitting its first significant solar flares since June 2013 earlier in the week, the sun continued to produce mid-level and significant solar flares on Oct. 27 and Oct. 28, 2013.

    Then, on Nov. 5, 2013, The sun emitted a significant solar flare, peaking at 5:12 p.m. EST. This flare was classified as an X3.3 flare.

    Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel.

    One of the larger flares was classified as an X1.0 flare, which peaked at 10:03 p.m. EDT on Oct. 27. "X-class" denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. In the past, X-class flares of this intensity have caused degradation or blackouts of radio communications for about an hour.

    Another large flare was classified as an M5.1 flare, which peaked at 12: 41 a.m. EDT on Oct. 28. Between Oct. 23, and the morning of Oct 28, there were three X-class flares and more than 15 additional M-class flares.

    Increased numbers of flares are quite common at the moment, since the sun is headed toward solar maximum conditions as part of its normal 11-year activity cycle. Humans have tracked this solar cycle continuously since it was discovered in 1843, and it is normal for there to be many flares a day during the sun's peak activity.

    The recent solar flare activity has also been accompanied by several coronal mass ejections or CMEs, another solar phenomenon that can send billions of tons of particles into space that can reach Earth one to three days later. These particles cannot travel through the atmosphere to harm humans on Earth, but they can affect electronic systems in satellites and on the ground.

  • Five Days of Flares and CMEs
    2013.10.29
    This movie shows 23 of the 26 M- and X-class flares on the sun between 18:00 UT Oct. 23 and 15:00 UT Oct. 28, 2013, as captured by NASA's Solar Dynamics Observatory. It also shows the coronal mass ejections — great clouds of solar material bursting off the sun into space — during that time as captured by the ESA/NASA Solar and Heliospheric Observatory.

2012

  • Biggest Solar Storm Since 2005
    2012.01.24
    The sun erupted late on January 22, 2012 with an M8.7 class flare, an earth-directed coronal mass ejection (CME), and a burst of fast moving, highly energetic protons known as a "solar energetic particle" event. The latter has caused the strongest solar radiation storm since September 2005 according to NOAA's Space Weather Prediction Center.
  • New Active Region on Sun Produces Three Flares Including an X1 on March 5
    2012.03.05
    On March 2, 2012 a new active region on the sun, region 1429, rotated into view. It has let loose two M-class flares and one X-class so far. The M-class flares erupted on March 2 and on March 4. The third flare, rated an X1, peaked at 10:30 ET on March 4. A CME accompanied each flare, though due to the fact that this active region is still off to the side of the sun, they will likely have a weak effect on Earth's magnetosphere.

    The M class flare on March 4 flare also came with what's called a Type IV radio burst that lasted for about 46 minutes. Sending out broadband radio waves, these bursts can occur towards the end of a solar flare and are believed to be created by moving electrons trapped in great, looping magnetic fields left over from the initial flare. The bursts can interfere with radio communications on Earth.

  • HD Close up of March 6th X5.4 Flare
    2012.03.07
    The sun erupted with one of the largest solar flares of this solar cycle on March 6, 2012 at 7PM ET. ?This flare was categorized as an X5.4, making it the second largest flare — after an X6.9 on August 9, 2011 — since the sun's activity segued into a period of relatively low activity called solar minimum in early 2007. The current increase in the number of X-class flares is part of the sun's normal 11-year solar cycle, during which activity on the sun ramps up to solar maximum, which is expected to peak in late 2013.

    About an hour later, at 8:14 PM ET, March 6, the same region let loose an X1.3 class flare. ?An X1 is 5 times smaller than an X5 flare.

    These X-class flares erupted from an active region named AR 1429 that rotated into view on March 2. ?Prior to this, the region had already produced numerous M-class and one X-class flare. ?The region continues to rotate across the front of the sun, so the March 6 flare was more Earthward facing than the previous ones. ?It triggered a temporary radio blackout on the sunlit side of Earth that interfered with radio navigation and short wave radio.

    In association with these flares, the sun also expelled two significant coronal mass ejections (CMEs), which are traveling faster than 600 miles a second and may arrive at Earth in the next few days. ?In the meantime, the CME associated with the X-class flare from March 4 has dumped solar particles and magnetic fields into Earth's atmosphere and distorted Earth's magnetic fields, causing a moderate geomagnetic storm, rated a G2 on a scale from G1 to G5. ?Such storms happen when the magnetic fields around Earth rapidly change strength and shape. ?A moderate storm usually causes aurora and may interfere with high frequency radio transmission near the poles. ?This storm is already dwindling, but the Earth may experience another enhancement if the most recent CMEs are directed toward and impact Earth.

    In addition, last night's flares have sent solar particles into Earth's atmosphere, producing a moderate solar energetic particle event, also called a solar radiation storm. These particles have been detected by NASA's SOHO and STEREO spacecraft, and NOAA's GOES spacecraft. ?At the time of writing, this storm is rated an S3 on a scale that goes up to S5. ?Such storms can interfere with high frequency radio communication.

    Besides the August 2011 X-class flare, the last time the sun sent out flares of this magnitude was in 2006. ?There was an X6.5 on December 6, 2006 and an X9.0 on December 5, 2006. Like the most recent events, those two flares erupted from the same region on the sun, which is a common occurrence.

  • Big Blast—April 16th Flare and CME
    2012.04.16
    A beautiful prominence eruption producing a coronal mass ejection (CME) shot off the east limb (left side) of the sun on April 16, 2012. Such eruptions are often associated with solar flares, and in this case an M1 class (medium-sized) flare occurred at the same time, peaking at 1:45 PM EDT. The CME was not aimed toward Earth.

    For full 4k frames of the April 15 small eruption and April 16 large eruption go here.

  • SDO's Ultra-high Definition View of 2012 Venus Transit
    2012.06.05
    Launched on Feb. 11, 2010, the Solar Dynamics Observatory, or SDO, is the most advanced spacecraft ever designed to study the sun. During its five-year mission, it will examine the sun's atmosphere, magnetic field and also provide a better understanding of the role the sun plays in Earth's atmospheric chemistry and climate. SDO provides images with resolution 8 times better than high-definition television and returns more than a terabyte of data each day.

    On June 5 2012, SDO collected images of the rarest predictable solar event—the transit of Venus across the face of the sun. This event lasted approximately 6 hours and happens in pairs eight years apart, which are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117.

    The videos and images displayed here are constructed from several wavelengths of extreme ultraviolet light and a portion of the visible spectrum. The red colored sun is the 304 angstrom ultraviolet, the golden colored sun is 171 angstrom, the magenta sun is 1700 angstrom, and the orange sun is filtered visible light. 304 and 171 show the atmosphere of the sun, which does not appear in the visible part of the spectrum.

  • Venus Transit 2012 from Solar Dynamics Observatory
    2012.06.12
    Full disk and Tracking views of Venus Transit from Solar Dynamics Observatory (SDO). It includes images taken by the Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA).

    These are the basic images, collected from the telemetry. To see the insets composited, see Venus Transit 2012 Composited Visuals.

  • Independence Day Solar Fireworks
    2012.07.05
    On July 2, 2012, an M5.6 class solar flare erupted in the sun's southern hemisphere from large sunspot AR1515, peaking at 6:52 AM EDT.

    From a different spot, but on that same day, the sun unleashed a coronal mass ejection (CME) that began at 4:36 AM EDT. Models from the NASA's Space Weather Center at Goddard Space Flight Center in Greenbelt, Md, describe the CME at traveling at nearly 700 miles per second, but do not show it heading toward Earth.

  • AR1515 Releases X1.1 Class Flare
    2012.07.09
    Active Region 1515 released an X1.1 class flare from the lower right of the sun on July 6, 2012, peaking at 7:08 PM EDT. This flare caused a radio blackout, labeled as an R3 on the National Oceanic and Atmospheric Administrations scale that goes from R1 to R5. Such blackouts can cause disruption to both high and low level radio frequencies.

    Earth's magnetosphere also underwent a minor geomagnetic storm on the evening of July 6 in response to relatively slow coronal mass ejections (CMEs) that have erupted from other regions on the sun since July 4.

  • Big Sunspot 1520 Releases X1.4 Class Flare
    2012.07.12
    An X1.4 class flare erupted from the center of the sun, peaking on July 12, 2012 at 12:52 PM EDT. It erupted from Active Region 1520 which rotated into view on July 6.
  • Before the Flare: AR1520 and Shimmering Coronal Loops
    2012.07.16
    The sun emitted a large flare on July 12, 2012, but earlier in the week it gave a demonstration of how gorgeous solar activity can be. This movie shows the sun from late July 8 to early July 10 shortly before it unleashed an X-class flare beginning at 12:11 PM EDT on July 12 as captured by the Solar Dynamics Observatory (SDO).
  • AR1520's Parting Shot: July 19, 2012 M7.7 Flare
    2012.07.19
    The sun emitted a moderate solar flare on July 19, 2012, beginning at 1:13 AM EDT and peaking at 1:58 AM. Solar flares are gigantic bursts of radiation that cannot pass through Earth's atmosphere to harm humans on the ground, however, when strong enough, they can disrupt the atmosphere and degrade GPS and communications signals.

    The flare is classified as an M7.7 flare. This means it is weaker than the largest flares, which are classified as X-class. M-class flares can cause brief radio communications blackouts at the poles.

    Increased numbers of flares are currently quite common, since the sun's standard 11-year activity cycle is ramping up toward solar maximum, which is expected in 2013. It is quite normal for there to be many flares a day during the sun's peak activity.

  • Monster Solar Filament Launch and CME
    2021.06.18
    A large filament of plasma erupted from the Sun in late August 2012. It was a structure that had 'hovered' over the solar surface for some time before finally being launched. Here are two views of the event - a fast version, illustrating more of the before and after configuration, sampled every 15 minutes; and a slow version, focused around the details of the actual eruption.
  • August 31, 2012 Magnificent CME
    2012.09.04
    On August 31, 2012 a long filament of solar material that had been hovering in the sun's atmosphere, the corona, erupted out into space at 4:36 p.m. EDT. The coronal mass ejection, or CME, traveled at over 900 miles per second. The CME did not travel directly toward Earth, but did connect with Earth's magnetic environment, or magnetosphere, with a glancing blow. causing aurora to appear on the night of Monday, September 3.
  • Active Region on the Sun Emits Another Flare
    2012.10.23
    The sun emitted a significant solar flare on Oct. 22, 2012, peaking at 11:17 p.m. EDT. The flare came from an active region on the left side of the sun that has been numbered AR 1598, which has already been the source of a number of weaker flares. This flare was classified as an X.1-class flare.

    "X-class" denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, and on. An X-class flare of this intensity can cause degradation or blackouts of radio communications for about an hour.

    Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. This can disrupt radio signals for anywhere from minutes to hours.

    The National Oceanic and Atmospheric Association, which is the United States government's official source for space weather forecasts and alerts, categorized the radio blackout associated with this flare as an R3, on a scale from R1 to R5. It has since subsided.

    Increased numbers of flares are quite common at the moment, since the sun's normal 11-year activity cycle is ramping up toward solar maximum, which is expected in 2013. Humans have tracked this solar cycle continuously since it was discovered in 1843, and it is normal for there to be many flares a day during the sun's peak activity. The first X-class flare of the current solar cycle occurred on Feb. 15, 2011 and there have been 15 X-class flares total in this cycle, including this one. The largest X-class flare in this cycle was an X6.9 on Aug. 9, 2011. This is the 7th X-class flare in 2012 with the largest being an X5.4 flare on March 7.

    This flare did not have an associated Earth-directed coronal mass ejection (CME), another solar phenomenon that can send solar particles into space and affect electronic systems in satellites and on Earth.

    Watch this video on YouTube.

  • Sun Emits a Mid-level Flare
    2012.11.13
    On Nov. 13, 2012, the sun emitted a mid-level solar flare, peaking at 9:04 p.m. EST.

    Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. This disrupts the radio signals for as long as the flare is ongoing, anywhere from minutes to hours.

    This flare is classified as an M6 flare. M-class flares are the weakest flares that can still cause some space weather effects near Earth. They can cause brief radio blackouts at the poles. This M-class flare caused a radio blackout categorized according to the National Oceanic and Atmospheric Association's Space Weather Scales as R2 — or "moderate" — on a scale of R1 to R5. It has since subsided.

    Increased numbers of flares are quite common at the moment, since the sun's normal 11-year activity cycle is ramping up toward solar maximum, which is expected in 2013. Humans have tracked this solar cycle continuously since it was discovered in 1843, and it is normal for there to be many flares a day during the sun's peak activity.

    The flare was not associated with a coronal mass ejection (CME), another solar phenomenon that can send solar particles into space and can reach Earth one to three days later. When Earth-directed, CMEs can affect electronic systems in satellites and on Earth.

2011

  • Sun Unleashes X6.9 Class Flare on August 9, 2011
    2011.08.09
    On August 9, 2011 at 3:48 a.m. EDT, the sun emitted an Earth-directed X6.9 flare, as measured by the NOAA GOES satellite. These gigantic bursts of radiation cannot pass through Earth's atmosphere to harm humans on the ground, however they can disrupt the atmosphere and disrupt GPS and communications signals. In this case, it appears the flare is strong enough to potentially cause some radio communication blackouts. It also produced increased solar energetic proton radiation — enough to affect humans in space if they do not protect themselves.

    As of March 2014, this flare is the largest of solar cycle 24.

  • SDO Sees Comet Lovejoy Survive Close Encounter With Sun
    2011.12.19
    One instrument watching for the comet was the Solar Dynamics Observatory (SDO), which adjusted its cameras in order to watch the trajectory. Not only does this help with comet research, but it also helps orient instruments on SDO—since the scientists know where the comet is based on other spacecraft, they can finely determine the position of SDO's mirrors. This first clip from SDO from the evening of Dec 15, 2011 shows Comet Lovejoy moving in toward the sun.

    Comet Lovejoy survived its encounter with the sun. The second clip shows the comet exiting from behind the right side of the sun, after an hour of travel through its closest approach to the sun. By tracking how the comet interacts with the sun's atmosphere, the corona, and how material from the tail moves along the sun's magnetic field lines, solar scientists hope to learn more about the corona. This movie was filmed by the Solar Dynamics Observatory in 171 angstrom wavelength, which is typically shown in yellow.

    Credit: NASA/SDO

  • Massive Solar Eruption Close-up
    2011.06.30
    On June 7, 2011 the Sun unleashed an M-2 (medium-sized) solar flare with a spectacular coronal mass ejection (CME). The large cloud of particles mushroomed up and fell back down looking as if it covered an area almost half the solar surface.

    SDO observed the flare's peak at 1:41 AM ET. SDO recorded these images in extreme ultraviolet light that show a very large eruption of cool gas. It is somewhat unique because at many places in the eruption there seems to be even cooler material — at temperatures less than 80,000 K.

    This video uses the full-resolution 4096 x 4096 pixel images at a one minute time cadence to provide the highest quality, finest detail version possible.

    It is interesting to compare the event in different wavelengths because they each see different temperatures of plasma. See the transcript for more notes on this.

    Frames for each wavelength are available on these separate pages: 304, 171, 211, and1700.