Global Precipitation Measurement

The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. Building upon the success of the Tropical Rainfall Measuring Mission (TRMM), the GPM concept centers on the deployment of a "Core" satellite carrying an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. Through improved measurements of precipitation globally, the GPM mission will help to advance our understanding of Earth's water and energy cycle, improve forecasting of extreme events that cause natural hazards and disasters, and extend current capabilities in using accurate and timely information of precipitation to directly benefit society. GPM, initiated by NASA and the Japan Aerospace Exploration Agency (JAXA) as a global successor to TRMM, comprises a consortium of international space agencies, including the Centre National d'Études Spatiales (CNES), the Indian Space Research Organization (ISRO), the National Oceanic and Atmospheric Administration (NOAA), the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), and others. The GPM Core Observatory launched from Tanegashima Space Center, Japan, at 1:37 PM EST on February 27, 2014.

For more information and resources please visit the Precipitation Measurement Missions web site.

Content Contact:

IMERG Visualizations

The ten satellites in the Global Precipitation Measurement Constellation provide unprecedented information about the rain and snow across the entire Earth. These visualizations show the constellation in action, taking precipitation measurements underneath the satellite orbits. As time progresses and the Earth's surface is covered with measurements, the structure of the Earth's preciptation becomes clearer, from the constant rainfall patterns along the Equator to the storm fronts in the mid-latitudes.
  • Global Rainfall-Triggered Landslides
    2015.07.01
    Landslides occur when an environmental trigger like an extreme rain event, often a severe storm or hurricane, and gravity's downward pull sets soil and rock in motion. Conditions beneath the surface are often unstable already, so the heavy rains act as the last straw that causes mud, rocks, or debris- or all combined- to move rapidly down mountains and hillsides. Unfortunately, people and property are often swept up in these unexpected mass movements. Landslides can also be caused by earthquakes, surface freezing and thawing, ice melt, the collapse of groundwater reservoirs, volcanic eruptions, and erosion at the base of a slope from th flow of river or ocean water. But torrential rains most commonly activate landslides. The NASA Global Landslide Catalog (GLC) was developed with the goal of identifying rainfall-triggered landslide events around the world, regardless of size, impact, or location. The GLC considers all types of mass movements triggered by rainfall, which have been reported in the media, disaster databases, scientific reports, or other sources. THe GLC has been compiled since 2007 at NASA Goddard Space Flight Center. Here the GLC is shown with precipitation data detected by NASA's Integrated Multi-satellite Retrieval for the Global Precipitation Measurement Mission (GPM) (IMERG). Landslide inventories are critical to support investigations of where and when landslides have happened and may occur in the future; however, there is surprisingly little information on the historical occurrence of landslides at the global scale. This visualization displays all rainfall-triggered landslides from 2007 through March 2015 from a publically available global rainfall-triggered landslide catalog(GLC). This is a valuable database for characterizing global patterns of landslide occurence and evaluating relationshipswith extreme precipitation at regional and global scales. For more information on the Global Landslide Catalog, please visit http://ojo-streamer.herokuapp.com
  • Near Real-Time Global Precipitation
    2015.03.31
    The global IMERG precipitation dataset provides rainfall rates for the entire world every thirty minutes. This remarkable dataset is created by combining precipitation measurements from 10 international satellites: GPM, TRMM, GCOM-W1, NOAA-18, NOAA-19, DMSP F-16, DMSP F-17, DMSP F-18, Metop-A, and Metop-B Although the process to create the combined dataset is intensive, the Global Precipitation Measurement team creates a preliminary, near real-time data set of precipitation within about a day of data acquisition. The animation on this page shows the most recent week or so of that preliminary data.
  • IMERG Southern Ocean Oscillations
    2015.03.31
    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration between NASA and the Japan Aerospace Exploration Agency and acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA's Integrated Multi-satellitE Retrievals for GPM data product, called IMERG, which combines data from all 12 satellites into a single, seamless map. The map covers more of the globe than any previous precipitation data set and is updated every half hour, allowing scientists to see how rain and snow storms move around nearly the entire planet. As scientists work to understand all the elements of Earth's climate and weather systems, and how they could change in the future, GPM provides a major step forward in providing the scientific community comprehensive and consistent measurements of precipitation.
  • IMERG Hurricane Bertha
    2015.03.31
    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration between NASA and the Japan Aerospace Exploration Agency and acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA's Integrated Multi-satellitE Retrievals for GPM data product, called IMERG, which combines data from all 12 satellites into a single, seamless map. The map covers more of the globe than any previous precipitation data set and is updated every half hour, allowing scientists to see how rain and snow storms move around nearly the entire planet. As scientists work to understand all the elements of Earth's climate and weather systems, and how they could change in the future, GPM provides a major step forward in providing the scientific community comprehensive and consistent measurements of precipitation.
  • IMERG Hurricane Bertha Precipitation Accumulation
    2015.03.31
    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration between NASA and the Japan Aerospace Exploration Agency and acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA's Integrated Multi-satellitE Retrievals for GPM data product, called IMERG, which combines data from all 12 satellites into a single, seamless map. The map covers more of the globe than any previous precipitation data set and is updated every half hour, allowing scientists to see how rain and snow storms move around nearly the entire planet. As scientists work to understand all the elements of Earth's climate and weather systems, and how they could change in the future, GPM provides a major step forward in providing the scientific community comprehensive and consistent measurements of precipitation.
  • IMERG Cyclones in the Pacific
    2015.03.31
    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration between NASA and the Japan Aerospace Exploration Agency and acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA's Integrated Multi-satellitE Retrievals for GPM data product, called IMERG, which combines data from all 12 satellites into a single, seamless map. The map covers more of the globe than any previous precipitation data set and is updated every half hour, allowing scientists to see how rain and snow storms move around nearly the entire planet. As scientists work to understand all the elements of Earth's climate and weather systems, and how they could change in the future, GPM provides a major step forward in providing the scientific community comprehensive and consistent measurements of precipitation.
  • IMERG Global Precipitation Rates
    2015.03.31
    The ten satellites in the Global Precipitation Measurement Constellation provide unprecedented information about the rain and snow across the entire Earth. This visualization shows the constellation in action, taking precipitation measurements underneath the satellite orbits. As time progresses and the Earth's surface is covered with measurements, the structure of the Earth's preciptation becomes clearer, from the constant rainfall patterns along the Equator to the storm fronts in the mid-latitudes. The dynamic nature of the precipitation is revealed as time speeds up and the satellite data swaths merge into a continuous animation of changing rain and snowfall. Finally, the video fades into an animation of IMERG, the newly available data set of global precipitation every thirty minutes that is derived from this satellite data.
  • IMERG Global Precipitation Accumulation
    2015.03.31
    The global IMERG precpitation dataset provides rainfall rates for the entire world every thirty minutes. Using this dataset, it is possible to calculate the amount of accumulated rainfal for any region over a period of time. This animation shows the accumulation of rainfall across the globe for a week in August, 2014. In addition to the dramatic accumulation near Japan due to Typhoon Halong and the track of Hurricane Bertha off the eastern coast of the United States, it is also possible to see a rare August storm over the North Sea near Europe, the origins of Hurricane Gonzalo on the western coast of Africa, and a deep tropical depression that produced floods across northern India.
  • IMERG United States
    2015.03.31
    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration between NASA and the Japan Aerospace Exploration Agency and acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA's Integrated Multi-satellitE Retrievals for GPM data product, called IMERG, which combines data from all 12 satellites into a single, seamless map. The map covers more of the globe than any previous precipitation data set and is updated every half hour, allowing scientists to see how rain and snow storms move around nearly the entire planet. As scientists work to understand all the elements of Earth's climate and weather systems, and how they could change in the future, GPM provides a major step forward in providing the scientific community comprehensive and consistent measurements of precipitation.
  • IMERG USA Precipitation Accumulation
    2015.03.31
    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration between NASA and the Japan Aerospace Exploration Agency and acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA's Integrated Multi-satellitE Retrievals for GPM data product, called IMERG, which combines data from all 12 satellites into a single, seamless map. The map covers more of the globe than any previous precipitation data set and is updated every half hour, allowing scientists to see how rain and snow storms move around nearly the entire planet. As scientists work to understand all the elements of Earth's climate and weather systems, and how they could change in the future, GPM provides a major step forward in providing the scientific community comprehensive and consistent measurements of precipitation.
  • IMERG Pacific Cyclones Precipitation Accumulation
    2015.03.31
    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration between NASA and the Japan Aerospace Exploration Agency and acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA's Integrated Multi-satellitE Retrievals for GPM data product, called IMERG, which combines data from all 12 satellites into a single, seamless map. The map covers more of the globe than any previous precipitation data set and is updated every half hour, allowing scientists to see how rain and snow storms move around nearly the entire planet. As scientists work to understand all the elements of Earth's climate and weather systems, and how they could change in the future, GPM provides a major step forward in providing the scientific community comprehensive and consistent measurements of precipitation.
  • IMERG Ghats Mountains, India
    2015.03.31
    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration between NASA and the Japan Aerospace Exploration Agency and acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA's Integrated Multi-satellitE Retrievals for GPM data product, called IMERG, which combines data from all 12 satellites into a single, seamless map. The map covers more of the globe than any previous precipitation data set and is updated every half hour, allowing scientists to see how rain and snow storms move around nearly the entire planet. As scientists work to understand all the elements of Earth's climate and weather systems, and how they could change in the future, GPM provides a major step forward in providing the scientific community comprehensive and consistent measurements of precipitation.
  • IMERG India Precipitation Accumulation
    2015.03.31
    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration between NASA and the Japan Aerospace Exploration Agency and acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA's Integrated Multi-satellitE Retrievals for GPM data product, called IMERG, which combines data from all 12 satellites into a single, seamless map. The map covers more of the globe than any previous precipitation data set and is updated every half hour, allowing scientists to see how rain and snow storms move around nearly the entire planet. As scientists work to understand all the elements of Earth's climate and weather systems, and how they could change in the future, GPM provides a major step forward in providing the scientific community comprehensive and consistent measurements of precipitation.
  • IMERG Typhoon Halong
    2015.03.31
    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration between NASA and the Japan Aerospace Exploration Agency and acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA's Integrated Multi-satellitE Retrievals for GPM data product, called IMERG, which combines data from all 12 satellites into a single, seamless map. The map covers more of the globe than any previous precipitation data set and is updated every half hour, allowing scientists to see how rain and snow storms move around nearly the entire planet. As scientists work to understand all the elements of Earth's climate and weather systems, and how they could change in the future, GPM provides a major step forward in providing the scientific community comprehensive and consistent measurements of precipitation.
  • IMERG Typhoon Halong Precipitation Accumulation
    2015.03.31
    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration between NASA and the Japan Aerospace Exploration Agency and acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA's Integrated Multi-satellitE Retrievals for GPM data product, called IMERG, which combines data from all 12 satellites into a single, seamless map. The map covers more of the globe than any previous precipitation data set and is updated every half hour, allowing scientists to see how rain and snow storms move around nearly the entire planet. As scientists work to understand all the elements of Earth's climate and weather systems, and how they could change in the future, GPM provides a major step forward in providing the scientific community comprehensive and consistent measurements of precipitation.
  • IMERG Amazon Dirunal Convection
    2015.03.31
    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration between NASA and the Japan Aerospace Exploration Agency and acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA's Integrated Multi-satellitE Retrievals for GPM data product, called IMERG, which combines data from all 12 satellites into a single, seamless map. The map covers more of the globe than any previous precipitation data set and is updated every half hour, allowing scientists to see how rain and snow storms move around nearly the entire planet. As scientists work to understand all the elements of Earth's climate and weather systems, and how they could change in the future, GPM provides a major step forward in providing the scientific community comprehensive and consistent measurements of precipitation.

Storms

Visualizations based on data from observed storms, including snow storms, hurricanes, and typhoons.
  • Tropical Storm Bill Over Texas
    2015.06.17
    Tropical Storm Bill made landfall over Texas at approximately 11:45am CST on June 16, 2015. Shortly after midnight, GPM passed over the storm as it slowly worked it's way northward across the already drenched state of Texas. This visualization shows Bill at precisely 12:11:27am CST (6:11:27 GMT) on June 17, 2015. The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs. The Dual-frequency Precipitation Radar provides the three-dimensional view, showing the structure of the storm spiraling inward toward the center, with heavier rain on the north side of the storm. Shades of blue represent ice in the upper part of clouds. Viewed from the side, the stark color change from blue to green marks the transition from ice to rain. For forecasters, GPM's microwave and radar data are part of the toolbox of satellite data, including other low Earth orbit and geostationary satellites, that they use to monitor tropical cyclones and hurricanes. The addition of GPM data to the current suite of satellite data is timely. Its predecessor precipitation satellite, the Tropical Rainfall Measuring Mission, after 18 years of operation was deorbited June 16 (the same day Tropical Storm Bill made landfall). GPM's new high-resolution microwave imager data and the unique radar data ensure that forecasters and modelers won't have a gap in coverage. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. All GPM data products can be found at NASA Goddard's Precipitation Processing Center.
  • Super Typhoon Maysak
    2015.04.08
    The Global Precipitation Measurement (GPM) Core Satellite captured a 3-D image of Typhoon Maysak on March 30th as the storm approached the Yap Islands. The storm later intensified to a category 5-equivalent super typhoon with 150-mph sustains winds.

    The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions.

    GPM data is part of the toolbox of satellite data used by forecasters and scientists to understand how storms behave. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. Current and future data sets are available with free registration to users from NASA Goddard's Precipitation Processing Center website.

  • 2/21/2015 Snow Storm
    2015.02.26
    At 10:05 a.m. EST Saturday, Feb. 21, 2015, the Global Precipitation Measurement mission's Core Observatory flew over a snow storm that covered most of the Washington DC metro area leaving as much as 9 inches of snow in some of the surrounding suburbs.

    The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions.

    GPM data is part of the toolbox of satellite data used by forecasters and scientists to understand how storms behave. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. Current and future data sets are available with free registration to users from NASA Goddard's Precipitation Processing Center website.

  • 2/17/2015 Snow Storm
    2015.02.26
    The Global Precipitation Measurement (GPM) Core Satellite captured a 3-D image of a winter storm on Feb. 17 that left six to 12 inches of snow over much of Kentucky, southwestern West Virginia, and northwestern North Carolina. The shades of blue in the 3-D image indicate rates of snowfall with more intense snowfall shown in darker blue. Underneath where it melts into rain, the most intense rainfall is shown in red. You can see a lot of variation in precipitation types over the Southeastern portion of the United States.

    The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions.

    GPM data is part of the toolbox of satellite data used by forecasters and scientists to understand how storms behave. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. Current and future data sets are available with free registration to users from NASA Goddard's Precipitation Processing Center website.

  • New England Nor'easter
    2015.01.28
    At 5:06 p.m. EST Monday, Jan. 26, 2015, the Global Precipitation Measurement mission's Core Observatory flew over the nor'easter dumping snow on New England. This satellite image shows precipitation rate of rainfall, in green to red, and snowfall, in blue to purple. The center of the storm, shown in 3-D, was offshore with far reaching bands of snowfall. More intense snow rates are shown in shades of blue, which can be seen on the northern edge of the storm and also over land up the coast from New York to Maine and into Canada, as well in the upper atmosphere before turning to heavy rainfall over the ocean.

    Nor'easters form when warm moist air traveling north with the Gulf Stream up the coast collides with cold air travelling down from Canada. The combination of moisture and cold can develop into snowstorms. In Jan. 2015, these air masses collided into a storm that brought blizzard conditions with, as of Tuesday morning, up to 30 inches of snow and 70 mile per hour winds across parts of Connecticut, Maine, Massachusetts, New Hampshire New York and Rhode Island. Lesser snow totals also hit New Jersey, Pennsylvania, Maryland, Virginia and West Virginia. Snow is expected to continue to fall into Wednesday as the storm moves northeast up the coast.

    The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions.

    GPM data is part of the toolbox of satellite data used by forecasters and scientists to understand how storms behave. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. Current and future data sets are available with free registration to users from NASA Goddard's Precipitation Processing Center website.

  • Typhoon Hagupit
    2014.12.09
    On December 5, 2014 (1032UTC) the Global Precipitation Measurement (GPM) mission's Core Observatory flew over Typhoon Hagupit as it headed towards the Philippines. A few hours later at 1500 UTC (10 a.m. EST), Super Typhoon Hagupit's maximum sustained winds were near 130 knots (149.6 mph/241 kph), down from 150 knots (172 mph/277.8 kph). Typhoon-force winds extend out 40 nautical miles (46 miles/74 km) from the center, while tropical-storm-force winds extend out to 120 miles (138 miles/222 km). The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions. For forecasters, GPM's microwave and radar data are part of the toolbox of satellite data, including other low Earth orbit and geostationary satellites, that they use to monitor tropical cyclones and hurricanes. The addition of GPM data to the current suite of satellite data is timely. Its predecessor precipitation satellite, the Tropical Rainfall Measuring Mission, is 18 years into what was originally a three-year mission. GPM's new high-resolution microwave imager data and the unique radar data ensure that forecasters and modelers won't have a gap in coverage. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. All GPM data products can be found at NASA Goddard's Precipitation Processing Center website http://pps.gsfc.nasa.gov/.
  • Hurricane Gonzalo
    2014.10.16
    On October 16th, 2014 (1342 UTC) the Global Precipitation Measurement (GPM) mission's Core Observatory flew over Hurricane Gonzalo as it headed towards Bermuda. Hurricane Gonzalo remains a category 4 hurricane on the Saffir-Simpson Hurricane Scale, with maximum sustained winds at 130 mph. As of 12:00 UTC (8:00a.m. EDT) on Friday, October 17th, the National Hurricane Center forecast located the storm about 195 miles south southwest of Bermuda, where a hurricane warning is in effect. The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs. The Dual-frequency Precipitation Radar provides the three-dimensional view, showing the structure of the storm spiraling inward toward the center, with heavier rain on the north side of the storm. Shades of blue represent ice in the upper part of clouds. Viewed from the side, the stark color change from blue to green marks the transition from ice to rain. For forecasters, GPM's microwave and radar data are part of the toolbox of satellite data, including other low Earth orbit and geostationary satellites, that they use to monitor tropical cyclones and hurricanes. The addition of GPM data to the current suite of satellite data is timely. Its predecessor precipitation satellite, the Tropical Rainfall Measuring Mission, is 18 years into what was originally a three-year mission. GPM's new high-resolution microwave imager data and the unique radar data ensure that forecasters and modelers won't have a gap in coverage. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. All GPM data products can be found at NASA Goddard's Precipitation Processing Center website http://pps.gsfc.nasa.gov/.
  • Typhoon Phanfone
    2014.10.07
    On October 6, 2014 (0215 UTC) the Global Precipitation Measurement (GPM) mission's Core Observatory flew over Typhoon Phanfone as it made landfall over Tokyo, Japan. At this point, Typhoon Phanfone is category 3 with maximum sustained winds at 127 miles per hour (mph) and gusts reaching 155 mph. Phanfone caused landslides and flooding throughout Japan. The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions. For forecasters, GPM's microwave and radar data are part of the toolbox of satellite data, including other low Earth orbit and geostationary satellites, that they use to monitor tropical cyclones and hurricanes. The addition of GPM data to the current suite of satellite data is timely. Its predecessor precipitation satellite, the Tropical Rainfall Measuring Mission, is 18 years into what was originally a three-year mission. GPM's new high-resolution microwave imager data and the unique radar data ensure that forecasters and modelers won't have a gap in coverage. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. All GPM data products can be found at NASA Goddard's Precipitation Processing Center website.
  • Typhoon Vongfong
    2014.10.14
    On October 9, 2014 (0248UTC) the Global Precipitation Measurement (GPM) mission's Core Observatory flew over Typhoon Vongfong as it headed towards Japan. At this point, the storm had weakened to a category 4 typhoon with maximum sustained winds at 150 miles per hour (mph), down form a category 5 typhoon on October 8th. The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions. For forecasters, GPM's microwave and radar data are part of the toolbox of satellite data, including other low Earth orbit and geostationary satellites, that they use to monitor tropical cyclones and hurricanes. The addition of GPM data to the current suite of satellite data is timely. Its predecessor precipitation satellite, the Tropical Rainfall Measuring Mission, is 18 years into what was originally a three-year mission. GPM's new high-resolution microwave imager data and the unique radar data ensure that forecasters and modelers won't have a gap in coverage. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. All GPM data products can be found at NASA Goddard's Precipitation Processing Center website http://pps.gsfc.nasa.gov/.
  • Hurricane Odile
    2014.09.17
    On September 15, 2014 (15:11 UTC) the Global Precipitation Measurement (GPM) mission's Core Observatory flew over Hurricane Odile as it made landfall on the Baja peninsula. At this point, Hurricane Odile is category 2 with maximum sustained winds at 98 miles per hour (mph) and gusts reaching 121 mph. Odile caused major damage to several Mexican beach resorts including Cabo San Lucas, and has the potential to cause flash flooding as far as Phoenix, Arizona. The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions. For forecasters, GPM's microwave and radar data are part of the toolbox of satellite data, including other low Earth orbit and geostationary satellites, that they use to monitor tropical cyclones and hurricanes. The addition of GPM data to the current suite of satellite data is timely. Its predecessor precipitation satellite, the Tropical Rainfall Measuring Mission, is 18 years into what was originally a three-year mission. GPM's new high-resolution microwave imager data and the unique radar data ensure that forecasters and modelers won't have a gap in coverage. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. All GPM data products can be found at NASA Goddard's Precipitation Processing Center website.
  • East Coast Snow Storm
    2014.09.04
    On March 17, 2014 the Global Precipitation Measurement (GPM) mission's Core Observatory flew over the East coast's last snow storm of the 2013-2014 winter season. This was also one of the first major snow storms observed by GPM shortly after it was launched on February 27, 2014. The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions. For forecasters, GPM's microwave and radar data are part of the toolbox of satellite data, including other low Earth orbit and geostationary satellites, that they use to monitor tropical cyclones and hurricanes. The addition of GPM data to the current suite of satellite data is timely. Its predecessor precipitation satellite, the Tropical Rainfall Measuring Mission, is 18 years into what was originally a three-year mission. GPM's new high-resolution microwave imager data and the unique radar data ensure that forecasters and modelers won't have a gap in coverage. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. All GPM data products will be released to the public on September 4, 2104. Current and future data sets are available to registered users from NASA Goddard's Precipitation Processing Center website.
  • Dissecting Hurricane Arthur
    2014.07.08
    The Global Precipitation Measurement mission's Core Observatory flew over Hurricane Arthur five times between July 1 and July 6, 2014. Arthur is the first tropical cyclone of the 2014 Atlantic Hurricane season. It formed as a tropical storm on Tuesday, July 1 and reached maximum intensity as a Category 2 hurricane on July 4, disrupting some coastal U.S. Independence Day celebrations. This visualization is taken from the flyover on July 3, 2014 with Hurricane Arthur just off the South Carolina coast. GPM data showed that the hurricane was asymmetrical, with spiral arms, called rain bands, on the eastern side of the storm but not on the western side. The GPM Core Observatory carries two instruments that show the location and intensity of the rain, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions. For forecasters, GPM's microwave and radar data are part of the toolbox of satellite data, including other low Earth orbit and geostationary satellites, that they use to monitor tropical cyclones and hurricanes. The addition of GPM data to the current suite of satellite data is timely. Its predecessor precipitation satellite, the Tropical Rainfall Measuring Mission, is 18 years into what was originally a three-year mission. GPM's new high-resolution microwave imager data and the unique radar data ensure that forecasters and modelers won't have a gap in coverage. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency. The satellite launched Feb. 27, and after its check-out period began its prime mission on May 29, in time for hurricane season. All GPM data products will be released to the public by September 2, 2104. Current and future data sets are available to registered users from NASA Goddard's Precipitation Processing Center website.
  • Constellation Snow Storm
    2014.09.04
    The Global Precipitation Measurement (GPM) mission unites data from ten U.S. and international satellites that measure rainfall and snowfall. The partnership, co-led by NASA and the Japan Aerospace Exploration Agency, is anchored by the GPM Core Observatory, launched on February 27, 2014. Carrying two advanced precipitation instruments, the GPM Microwave Imager and Dual-frequency Precipitation Radar, the Core Observatory measures the full range of precipitation types from heavy rainfall to, for the first time, light rain and snowfall. With an orbit that cuts across the path of the other satellites it is also used as a reference standard so that data from all the partner satellites can be meaningfully compared. The combined data from all ten satellites allows scientists to collect precipitation data from all parts of the world in under three hours.

Data Visualizations

Animated sequences based on actual data and/or simulations.
  • IMERG Accumulation Map
    2015.03.31
    The global IMERG precpitation dataset provides rainfall rates for the entire world every thirty minutes. Using this dataset, it is possible to calculate the amount of accumulated rainfal for any region over a period of time. This animation shows the accumulation of rainfall across the globe for a week in August, 2014. In addition to the dramatic accumulation near Japan due to Typhoon Halong and the track of Hurricane Bertha off the eastern coast of the United States, it is also possible to see a rare August storm over the North Sea near Europe, the origins of Hurricane Gonzalo on the western coast of Africa, and a deep tropical depression that produced floods across northern India.
  • IMERG Global Precipitation Rates
    2015.02.26
    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration between NASA and the Japan Aerospace Exploration Agency and acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA's Integrated Multi-satellitE Retrievals for GPM data product, called IMERG, which combines data from all 12 satellites into a single, seamless map. The map covers more of the globe than any previous precipitation data set and is updated every half hour, allowing scientists to see how rain and snow storms move around nearly the entire planet. As scientists work to understand all the elements of Earth's climate and weather systems, and how they could change in the future, GPM provides a major step forward in providing the scientific community comprehensive and consistent measurements of precipitation.
  • GMI First Light
    2014.03.25
    Eleven days after the Feb. 27 launch of the Global Precipitation Measurement (GPM) Core Observatory, the two instruments aboard took their first joint images of an interesting precipitation event. On March 10, the Core Observatory passed over an extra-tropical cyclone about 1055 miles (1700 kilometers) due east of Japan's Honshu Island. The storm formed from the collision of a cold front wrapping around a warm front, emerging over the ocean near Okinawa on March 8. It moved northeast over the ocean south of Japan, drawing cold air west-to-east over the land, a typical winter weather pattern that also brought heavy snow over Hokkaido, the northernmost of the four main islands. After the GPM images were taken, the storm continued to move eastward, slowly intensifying before weakening in the central North Pacific. This visualization shows data from the GPM Microwave Imager, which observes different types of precipitation with 13 channels. Scientists analyze that data and then use it to calculate the light to heavy rain rates and falling snow within the storm.
    For more information on this topic:
         GPM web site
    Other multimedia items related to this story:
         GPM GMI First Light (id 11508)
         GPM DPR First Light (id 11509)
    All multimedia items from this point on are print stills.
  • DPR First Light
    2014.03.25
    Images and animation from the GPM DPR first light.
  • TRMM Global Rainfall
    2014.02.27
    The Global Precipitation Measurement, or GPM, mission will use an international constellation of satellites to study global rain, snow and ice to better understand our climate, weather, and hydrometeorological processes. We cannot understand the water and energy cycle or predict weather and climate without an accurate knowledge of the intensity and distribution of global precipitation. Measurement of various aspects of precipitation (e.g. distribution, amount, rates, and the associated heat release) represents one of the most challenging research problems in Earth science. Yet, accurate global precipitation measurements will benefit weather, climate, hydro-meteorological, and applications communities alike. The concept of Global Precipitation Measurement (GPM) is NASA's response to the need for accurate global precipitation measurement.
  • Earth Observing Fleet
    2014.01.27
    This animation shows the orbits of NASA's current (as of January 2014) fleet of Earth remote sensing observatories. The satellites include components of the A-Train (Aqua, Aura, CloudSat, CALIPSO), two satellites launched in 2011 (Aquarius, Suomi NPP), and eleven others (ACRIMSAT, SORCE, GRACE, Jason 1 and 2, Landsat 7, Landsat 8, GPM, QuikSCAT, TRMM, and EO-1). These satellites measure tropical rainfall, solar irradiance, clouds, sea surface height, ocean salinity, and other aspects of the global environment. Together, they provide a picture of the Earth as a system. This is an update of entry 4070. The orbits are based on orbital elements with epochs in April of 2013. The animation spans twenty-nine hours, from 04:10 UT on April 14, 2013 to 09:24 UT on Aril 15, 2013. Some simulated orbits where added, such as GPM, as they had not launched at the time these visualizations were created. Two versions of this visualization are provided. The first colors the orbits blue except that TRMM is colored green and GPM is colored red. The second visualization colors all of the orbits blue.
  • 3D Mowhawk
    2012.12.03
    The Global Precipitation Measurement (GPM) mission is co-led by NASA and the Japan Aerospace Exploration Agency (JAXA). NASA and JAXA will provide a GPM Core satellite to serve as a reference for precipitation measurements made by a constellation of satellites. The GPM Core satellite carries two instruments: a state-of-the-art radiometer called the GPM Microwave Imager (GMI) and the first space-borne Dual-frequency Precipitation Radar (DPR), which sees the 3D structure of falling rain and snow. The DPR and GMI work in concert to provide a unique database that will be used to improve the accuracy and consistency of measurements from all partner satellites, which will then be combined into the uniform global precipitation dataset.

    This animation shows the scanning capabilities of the GMI and DPR onboard the GPM Core satellite. Heavy rainfall is shown in red and light rainfall in blue. The DPR shows 3D precipitation in a midlatitude storm from two overlapping swaths. The Ka-band frequency scans across a region of 78 miles (125 kilometers) and is nested within the wider scan of the Ku-band frequency of 147 miles (245 kilometers). JAXA and Japan's National Institute of Information and Communications Technology (NICT) built the DPR. The GMI, shown as the flat precipitation values,constantly scans a region 550 miles (885 kilometers) across. The Ball Aerospace and Technology Corporation built the GMI under contract with NASA Goddard Space Flight Center.

    The GPM Core observatory is currently being built and tested at NASA's Goddard Space Flight Center in Greenbelt, Md. It is scheduled to launch from Tanegashima space center in Japan in early 2014.

  • GPM Constellation
    2012.05.28
    Nine U.S. and international satellites will soon be united by the Global Precipitation Measurement (GPM) mission, a partnership co-led by NASA and the Japan Aerospace Exploration Agency (JAXA). NASA and JAXA will provide the GPM Core satellite to serve as a reference for precipitation measurements made by this constellation of satellites, which will be combined into a single global dataset continually refreshed every three hours.

    While each partner satellite has its own mission objective, they all carry a type of instrument called a radiometer that measures radiated energy from rainfall and snowfall. The GPM Core satellite carries two instruments: a state-of-the-art radiometer called the GPM Microwave Imager (GMI) and the first space-borne Dual-frequency Precipitation Radar (DPR), which sees the 3D structure of falling rain and snow. The DPR and GMI work in concert to provide a unique database that will be used to improve the accuracy and consistency of measurements from all partner satellites, which will then be combined into the uniform global precipitation dataset.

    In this animation the orbit paths of the partner satellites of the GPM constellation fill in blue as the instruments pass over Earth. Rainfall appears light blue for light rain, yellow for moderate, and red for heavy rain. Partner satellites are traced in green and purple, and the GPM Core is traced in red.

    The GPM Core observatory is currently being built and tested at NASA's Goddard Space Flight Center in Greenbelt, Md. It is scheduled to launch from Tanegashima space center in Japan in early 2014.

  • DC-8 Flight Path for GCPEx
    2012.01.31
    NASA is flying an airborne science laboratory through Canadian snowstorms for six weeks in support of a difficult task of the upcoming Global Precipitation Measurement (GPM) mission: measuring snowfall from space. GPM is an international satellite mission scheduled for launch in 2014 that will provide next-generation observations of worldwide rain and snow every three hours. It is the first precipitation mission designed to detect falling snow from space. NASA's DC-8 flying laboratory flew this flight path on Jan 19, 2012 in support of NASA's Global Precipitation Measurement Cold-season Precipitation Experiment (GCPEx) snow study. The GCPEx field campaign will help scientists match measurements of snow in the air and on the ground.

Animations

Conceptual and illustrative animations of GPM instruments and science concepts.

Edited Features

Produced web shorts on science topics, engineering features, and team member profiles.
  • Water Falls: Getting the Big Picture
    2015.05.26
    The second spinoff video for the Science on a Sphere film "Water Falls." This video looks at the uses and advantages of remote sensing.
  • A Week in the Life of Rain
    2015.03.31
    Rain, snow, hail, ice, and every slushy mix in between make up the precipitation that touches everyone on our planet. But not all places rain equally. Precipitation falls differently in different parts of the world, as you see in NASA's new video that captures every shower, every snow storm and every hurricane from August 4 to August 14, 2014. The GPM Core Observatory, co-led by NASA and the Japan Aerospace Exploration Agency (JAXA), was launched on Feb 27, 2014, and provides advanced instruments that can see rain and falling snow all the way through the atmosphere. This Core Observatory serves as the reference standard to unite preciptiation observations from a dozen satellites, which together produce the most detailed world-wide view of everything from light rain to heavy rain and, for the first time, falling snow. Scientists merged data from 12 precipitation satellites into a single seamless map called the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM), or IMERG. Every 30 minutes, IMERG generates a new global map with a resolution of 10 kilometers by 10 km (6.2 miles by 6.2 mi), about the size of a small suburb. These comprehensive maps allow scientists to observe changes in precipitation patterns across 87 percent of the globe and through time.
  • GPM Yields IMERG
    2015.02.26
    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration between NASA and the Japan Aerospace Exploration Agency and acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA's Integrated Multi-satellitE Retrievals for GPM data product, called IMERG, which combines all of these data from 12 satellites into a single, seamless map.

    The map covers more of the globe than any previous precipitation data set and is updated every half hour, allowing scientists to see how rain and snow storms move around nearly the entire planet. As scientists work to understand all the elements of Earth’s climate and weather systems, and how they could change in the future, GPM provides a major step forward in providing the scientific community comprehensive and consistent measurements of precipitation.

  • GPM in a Minute
    2015.02.26
    A timelapse (2011-2014) of GPM in the clean room at Goddard Space Flight Center and at Tanegashima Space Center, Japan.
  • Scanning a Snow Storm
    2014.09.04
    On March 17, 2014 the Global Precipitation Measurement (GPM) mission's Core Observatory flew over the East coast's last snow storm of the 2013-2014 winter season. This was also one of the first major snow storms observed by GPM shortly after it was launched on February 27, 2014. The GPM Core Observatory carries two instruments that show the location and intensity of rain and snow, which defines a crucial part of the storm structure – and how it will behave. The GPM Microwave Imager sees through the tops of clouds to observe how much and where precipitation occurs, and the Dual-frequency Precipitation Radar observes precise details of precipitation in 3-dimensions. For forecasters, GPM's microwave and radar data are part of the toolbox of satellite data, including other low Earth orbit and geostationary satellites, that they use to monitor tropical cyclones and hurricanes.
  • The Data Downpour
    2014.01.28
    In a data-processing room at NASA’s Goddard Space Flight Center in Greenbelt, Md., racks of high-powered computers are getting ready to make a map. It's not the familiar satellite map of farms, forests and cities. Instead, this map will show what's hovering above the ground — snowfall and rainfall. The data will come from the Global Precipitation Measurement mission, an international partnership led by NASA and the Japan Aerospace Exploration Agency. The GPM Core Observatory will launch in early 2014, but the mission goes beyond data gathering data from one satellite. Eleven spacecraft from U.S. agencies and other countries, all carrying similar instruments to measure rainfall, will contribute data to this global rain map. Compiling observations from these eleven sources into one unified global data set is the job of the Precipitation Processing System at Goddard.
  • Water Falls: Show Me the Water
    2014.07.30
    This is a spinoff video for the Science On a Sphere film, "Water Falls."
  • GPM's Stormy New View
    2014.03.25
    On March 10, the Core Observatory passed over an extra-tropical cyclone about 1055 miles (1700 kilometers) due east of Japan's Honshu Island. This visualization shows data from the GPM Microwave Imager, which observes different types of precipitation with 13 channels. Scientists analyze that data and then use it to calculate the light to heavy rain rates and falling snow within the storm.

    First data visualization of the three-dimensional structure of precipitation collected by the Dual-frequency Precipitation Radar aboard the Global Precipitation Measurement (GPM) mission's Core Observatory. The image shows rain rates across a vertical cross-section approximately 4.4 miles (7 kilometers) high through an extra-tropical cyclone observed off the coast of Japan on March 10, 2014. The DPR 152-mile (245 kilometers) wide swath is nested within the center of the GPM Microwave Imager's wider observation path. Red areas indicate heavy rainfall while yellow and blue indicate less intense rainfall. The GPM Core Observatory collects precipitation information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours.

  • Meet the Team
    2014.01.21
    This is a series of short profiles that showcase the systems engineers and designers who helped develop, build, and test the Global Precipitation Measurement (GPM) Core Observatory spacecraft.
  • GPM Arrives in Japan
    2014.01.06
    Built at NASA's Goddard Space Flight Center in Greenbelt, Md., the GPM spacecraft travelled roughly 7,300 miles (11,750 kilometers) to its launch site at Tanegashima Space Center on Tanegashima Island, Japan, where it is scheduled for liftoff on Feb 27, 2014 1:07 pm (EST). GPM's Core Observatory is a joint mission between NASA and the Japan Aerospace Exploration Agency to study rainfall and snowfall around the globe, including weather and storms that the Core Observatory previewed on its trans-Pacific journey.
  • Engineering the Core Observatory
    2014.01.01
    For the past three years, the Global Precipitation Measurement (GPM) Core Observatory has gone from components and assembly drawings to a fully functioning satellite at NASA's Goddard Space Flight Center in Greenbelt, Md. The satellite has now arrived in Japan, where it will lift off in early 2014.

    The journey to the launch pad has been a long and painstaking process. It began with the most basic assembly of the satellite's frame and electrical system, continued through the integration of its two science instruments, and has now culminated in the completion of a dizzying array of environmental tests to check and recheck that GPM Core Observatory will survive its new home in orbit.

  • Anatomy of a Raindrop
    2013.05.31
    This short video explains how a raindrop falls through the atmosphere and why a more accurate look at raindrops can improve estimates of global precipitation.

    For a printable droplet hand out click here.

  • Zebra Crossing
    2013.08.02
    Botswana's Okavango Delta and the Makgadikgadi Salt Pans are two ends of a 360-mile round trip zebra migration, the second longest on Earth. In this animation, shades of red show dry areas, green represents vegetation, and the dots show GPS tracked zebras. The zebras begin at the Okavango Delta in late September. After the dry Southern hemisphere winter, November rains signal it is time to begin their two-week journey to the Salt Pans. The zebras feast on nutrient-rich grasses all summer, and return to the Delta as the rain peters out in April.

    Fences blocked this zebra migration from 1968 to 2004. After they came down, researchers began tracking zebras with GPS and discovered this migration. They compared the zebras' location to NASA satellite data of rainfall and vegetation, and they found that migrating zebras have quickly learned when to leave the Delta and the Salt Pans using environmental cues. Researchers then use these cues to predict when the zebras will be on the move, a powerful tool for conservation.

  • Faces of GPM: Engineers
    2012.10.01
    Learn about the exciting and diverse team that studies precipitation at NASA. Watch interviews with scientists and engineers to get a face-to-face perspective on careers in science and technology.
  • Applications: Too Much, Too Little
    2012.08.27
    Water is fundamental to life on Earth. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. Since rainfall and snowfall vary greatly from place to place and over time, satellites can provide more uniform observations of rain and snow around the globe than ground instruments, especially in areas where surface measurements are difficult. GPM's next-generation global precipitation data will lead to scientific advances and societal benefits in the following areas:

    Improved knowledge of the Earth's water cycle and its link to climate change

    New insights into precipitation microphysics, storm structures and large-scale atmospheric processes

    Better understanding of climate sensitivity and feedback processes

    Extended capabilities in monitoring and predicting hurricanes and other extreme weather events

    Improved forecasting capabilities for natural hazards, including floods, droughts and landslides.

    Enhanced numerical prediction skills for weather and climate

    Better agricultural crop forecasting and monitoring of freshwater resources.

    For more information and resources please visit the Precipitation Measurement Missions web site.

  • For Good Measure
    2013.04.07
    The need for measuring the when and where and how much of precipitation goes beyond our weekend plans. We also need to know precipitaiton on a global scale. Rain gauges and radars are useful but are inconsistent and do not cover enough of the globe to provide accurate precipitation rates. The GPM constellation will cover the globe and give us a more comprehensive look at precipitation.
  • Our Wet Wide World
    2013.04.12
    The Global Precipitation Measurement (GPM) is an international satellite mission to provide next-generation observations of rain and snow worldwide every three hours. NASA and the Japan Aerospace Exploration Agency (JAXA) will launch a "Core" satellite carrying advanced instruments that will set a new standard for precipitation measurements from space. The data they provide will be used to unify precipitation measurements made by an international network of partner satellites to quantify when, where, and how much it rains or snows around the world.

    The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information to directly benefit society.

  • Faces of GPM: Steve Nesbitt
    2012.10.01
    Learn about the exciting and diverse team that studies precipitation at NASA. Watch interviews with scientists and engineers to get a face-to-face perspective on careers in science and technology.
  • GPM Enters TVAC
    2012.11.30
    GPM enters its testing phase in the Space Environmental Simulator (SES).
  • The Reign of Rain
    2012.11.27
    When it rains it pours, goes the saying, and for the last 15 years, the data on tropical rainfall have poured in. NASA's Tropical Rainfall Measuring Mission (TRMM) was launched on Nov. 27, 1997, and for the last decade and a half has enabled precipitation science that has had far reaching applications across the globe. Rain is one of the most important natural processes on Earth, and nowhere does it rain more than across the tropics. Orbiting at an angle to the equator that covers 35 degrees north to 35 degrees south of the equator, TRMM carries five instruments that collectively measure the intensity of rainfall, characteristics of the water vapor and clouds, and lightning associated with the rain events. One of the instruments, the Precipitation Radar, built by NASA's mission partner the Japan Aerospace Exploration Agency (JAXA), is the first precipitation radar flown in space. It returns images of storms that for the first time have revealed close up three-dimensional views of how rainbands in tropical cyclones develop, potentially indicating how strong the storms might become.
  • Faces of GPM: Dalia Kirschbaum
    2012.10.01
    Learn about the exciting and diverse team that studies precipitation at NASA. Watch interviews with scientists and engineers to get a face-to-face perspective on careers in science and technology.
  • Applications: Tropical Cyclones
    2012.08.27
    Water is fundamental to life on Earth. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. Since rainfall and snowfall vary greatly from place to place and over time, satellites can provide more uniform observations of rain and snow around the globe than ground instruments, especially in areas where surface measurements are difficult. GPM's next-generation global precipitation data will lead to scientific advances and societal benefits in the following areas:

    Improved knowledge of the Earth's water cycle and its link to climate change

    New insights into precipitation microphysics, storm structures and large-scale atmospheric processes

    Better understanding of climate sensitivity and feedback processes

    Extended capabilities in monitoring and predicting hurricanes and other extreme weather events

    Improved forecasting capabilities for natural hazards, including floods, droughts and landslides.

    Enhanced numerical prediction skills for weather and climate

    Better agricultural crop forecasting and monitoring of freshwater resources.

    For more information and resources please visit the Precipitation Measurement Missions web site.

  • The Fresh(water) Connection
    2012.05.15
    The Global Precipitation Measurement (GPM) is an international satellite mission to provide next-generation observations of rain and snow worldwide every three hours. NASA and the Japan Aerospace Exploration Agency (JAXA) will launch a "Core" satellite carrying advanced instruments that will set a new standard for precipitation measurements from space. The data they provide will be used to unify precipitation measurements made by an international network of partner satellites to quantify when, where, and how much it rains or snows around the world.

    The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information to directly benefit society.

  • JAXA's DPR Arrives at Goddard
    2012.03.19
    The Dual-frequency Precipitation Radar (DPR) built by the Japan Aerospace Exploration Agency (JAXA) for the Global Precipitation Measurement (GPM) mission's Core Observatory arrived on Friday, March 16 and was unloaded today at NASA's Goddard Space Flight Center, Greenbelt, Md. Comprised of two radars, the DPR is one of two instruments that will fly on the Core Observatory scheduled for launch in February 2014. The GPM mission will provide a new generation of satellite observations of rain and snow worldwide every three hours for scientific research and societal benefits. NASA's mission partner JAXA developed the DPR in cooperation with Japan's National Institute of Information and Communications Technology. The instrument will provide 3-D measurements of the shapes and sizes of raindrops and snowflakes and other physical characteristics that will allow scientists to better understand the physical properties of storms.
  • Wrapping Up Cold Season Campaign
    2012.03.17
    For six weeks in Ontario, Canada, scientists and engineers lead a field campaign to study the science and mechanics of falling snow. The datasets retrieved will be used to generate algorithms which translate what the GPM Core satellite "sees" into precipitation rates, including that of falling snow. Ground validation science manager Walt Petersen gives a summary of the GCPEx field campaign. Field campaigns are critical in improving satellite observations and precipitation measurements.
  • What We Don't Know About Snow
    2012.07.03
    GPM Deputy Project Scientist Gail Skofronick-Jackson discusses GPM's snowfall measurement capabilities and the challenges of measuring snow.

Launch Coverage

GPM launched at 1:37 PM EST on February 27, 2014, from Tanegashima Space Center, Japan.
  • GPM Launch from Japan
    2014.02.26
    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen launching from th Tanegashima Space Center, 1:37 PM (EST) on Friday, Feb. 28, 2014, Tanegashima Space Center. The GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours.
  • Live Launch Coverage
    2014.02.26
    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen launching from th Tanegashima Space Center, 1:37 PM (EST) on Friday, Feb. 28, 2014, Tanegashima Space Center. The GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours.
  • Launch Video File
    2014.02.26
    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen launching from th Tanegashima Space Center, 1:37 PM (EST) on Friday, Feb. 28, 2014, Tanegashima Space Center. The GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours.
  • Postlaunch Briefing from Japan
    2014.02.26
    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen launching from th Tanegashima Space Center, 1:37 PM (EST) on Friday, Feb. 28, 2014, Tanegashima Space Center. The GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours.
  • Launch Live Shot Campaign
    2014.02.26
    NASA scientists talk about the GPM mission ahead of launch.
  • Launch Coverage Promo
    2014.02.20
    Join NASA as we count down the launch of the Global Precipitation Measurement (GPM) mission at 12:00 PM EST, Thursday, February 27, 2014. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA) and it will set a new standard in measuring rain and snow around the world. As we build up to the launch from Tanegashima Space Center in Japan, our NASA scientists will discuss the satellite's major innovations and the big questions GPM will set out to answer. Follow along on NASA Television (www.nasa.gov/ntv) and ask your big questions to the experts using #gpm on Twitter. GPM is scheduled to launch from Tanegashima Space Center at 1:07 PM EST on February 27, 2014. For more information, visit www.nasa.gov/GPM.

Countdown to Launch

Short videos highlighting major steps along the way from Goddard Space Flight Center, Md., to launch from Tanegashima Island, Japan.
  • Waiting for Launch
    2014.02.20
    GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space.

    The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking.

  • GPM's Last Stop Before Orbit
    2014.02.20
    GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space.

    The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking.

  • Greetings from Minamitane!
    2014.02.20
    GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space.

    The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking.

  • Fairing Encapsulation
    2014.02.20
    GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space.

    The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking.

  • Arriving in Japan
    2013.11.26
    An international satellite that will set a new standard for global precipitation measurements from space has completed a 7,300-mile journey from the United States to Japan, where it now will undergo launch preparations.

    A U.S. Air Force C-5 transport aircraft carrying the Global Precipitation Measurement (GPM) Core Observatory landed at Kitakyushu Airport, about 600 miles southwest of Tokyo, at approximately 10:30 p.m. EST Saturday, Nov. 23.

    The spacecraft, the size of a small private jet, is the largest satellite ever built at NASA’s Goddard Space Flight Center in Greenbelt, Md. It left Goddard inside a large shipping container Nov. 19 and began its journey across the Pacific Ocean Nov. 21 from Joint Base Andrews in Maryland, with a refueling stop in Anchorage, Alaska.

    From Kitakyushu Airport, the spacecraft was loaded onto a barge heading to the Japan Aerospace Exploration Agency's (JAXA's) Tanegashima Space Center on Tanegashima Island in southern Japan, where it will be prepared for launch in early 2014 on an H-IIA rocket.

  • GPM Ships Out
    2013.11.26
    An international satellite that will set a new standard for global precipitation measurements from space has completed a 7,300-mile journey from the United States to Japan, where it now will undergo launch preparations.

    A U.S. Air Force C-5 transport aircraft carrying the Global Precipitation Measurement (GPM) Core Observatory landed at Kitakyushu Airport, about 600 miles southwest of Tokyo, at approximately 10:30 p.m. EST Saturday, Nov. 23.

    The spacecraft, the size of a small private jet, is the largest satellite ever built at NASA’s Goddard Space Flight Center in Greenbelt, Md. It left Goddard inside a large shipping container Nov. 19 and began its journey across the Pacific Ocean Nov. 21 from Joint Base Andrews in Maryland, with a refueling stop in Anchorage, Alaska.

    From Kitakyushu Airport, the spacecraft was loaded onto a barge heading to the Japan Aerospace Exploration Agency's (JAXA's) Tanegashima Space Center on Tanegashima Island in southern Japan, where it will be prepared for launch in early 2014 on an H-IIA rocket.

Raw Media for Broadcast

HD broadcast-quality footage of the GPM Core spacecraft in various stages of integration and testing, as well as the shipping of the spacecraft to Japan in preparation for launch.
  • TRMM b-roll
    2014.07.22
    This is footage of the Tropical Rainfall Measuring Mission (TRMM).
  • GPM Arrives in Japan
    2014.01.17
    Extended b-roll of GPM's arrival in Japan and journey to Tanegashima Space Center, Japan.

    Built at NASA's Goddard Space Flight Center in Greenbelt, Md., the GPM spacecraft travelled roughly 7,300 miles (11,750 kilometers) to its launch site at Tanegashima Space Center on Tanegashima Island, Japan, where it is scheduled for liftoff on Feb 27, 2014 1:07 pm (EST). GPM's Core Observatory is a joint mission between NASA and the Japan Aerospace Exploration Agency to study rainfall and snowfall around the globe, including weather and storms that the Core Observatory previewed on its trans-Pacific journey.

  • GPM Ships Out
    2013.11.25
    An international satellite that will set a new standard for global precipitation measurements from space began its 7,300-mile journey from Maryland to Japan where it will undergo launch preparations. The Global Precipitation Measurement (GPM) mission is a partnership led by NASA and the Japan Aerospace Exploration Agency (JAXA). GPM’s Core Observatory satellite is designed to unify precipitation measurements made by a constellation of U.S. and international partner satellites to achieve global coverage of rain and snow every three hours. The spacecraft was carried by truck from its design and testing home at NASA's Goddard Space Flight Center in Greenbelt, Md., on Nov. 19th inside a large transportation container to Andrews Air Force Base, Md. The container was loaded onto an Air Force C-5 transport aircraft, which left Andrews early on Nov. 21 for a 15-hour flight to the Kitakyushu Airport in Japan. From the Kitakyushu Airport the spacecraft will be loaded onto a barge and shipped to JAXA’s Tanegashima Space Center on Tanegashima Island in southern Japan where it will be prepared for launch in early 2014 on a H-IIA rocket. The GPM Core Observatory satellite, which is the size of a small business jet, is the largest Earth science satellite ever built at NASA Goddard.

    This is footage of the GPM Core spacecraft leaving Goddard Space Flight Center and traveling to Andrews Air Force Base for travel to Japan for launch.

  • GPM Video File
    2013.11.05
    The Global Precipitation Measurement (GPM) mission is an international satellite mission that will set a new standard for precipitation measurements from space, providing the next-generation observations of rain and snow worldwide every three hours. GPM data will advance our understanding of the water and energy cycles and extend the use of precipitation data to directly benefit society. JAXA, the Japan Aerospace Exploration Agency, is NASA's main partner in GPM. GPM will launch in early 2014.
  • Spacecraft B-roll
    2012.06.14
    A selection of footage of the GPM Core Observatory building, testing, and integration.
  • Snow B-roll
    2012.07.03
    GPM Deputy Project Scientist Gail Skofronick-Jackson discusses GPM's snowfall measurement capabilities and the challenges of measuring snow.
  • GCPEx Airborne Campaign
    2012.01.10
    NASA is flying an airborne science laboratory through Canadian snowstorms for six weeks in support of a difficult task of the upcoming Global Precipitation Measurement (GPM) mission: measuring snowfall from space. GPM is an international satellite mission scheduled for launch in 2014 that will provide next-generation observations of worldwide rain and snow every three hours. It is the first precipitation mission designed to detect falling snow from space.

Prelaunch Press Briefings

Press briefings held on January 27, 2014, from Goddard Space Flight Center.
  • Prelaunch Press Briefings
    2014.01.30
    NASA held a series of media events Monday, Jan. 27, in advance of the February launch of the Global Precipitation Measurement (GPM) Core Observatory from Japan. The events were held at NASA’s Goddard Space Flight Center in Greenbelt, Md.

    GPM is an international satellite mission led by NASA and the Japan Aerospace Exploration Agency (JAXA) that will provide next-generation observations of rain and snow worldwide. GPM data also will contribute to climate research and the forecasting of extreme weather events such as floods and hurricanes.

    The GPM Core Observatory is scheduled to lift off Feb. 27, between 1:07 and 3:07 p.m. EST, from JAXA's Tanegashima Space Center in Japan.

    Media events include briefings on the GPM mission and science. Briefing panelists are:

    Steven Neeck, deputy associate director, flight program, Earth Science, NASA Headquarters, Washington

    Kinji Furukawa, GPM Dual-frequency Precipitation Radar deputy project manager, JAXA, Tsukuba

    Art Azarbarzin, GPM project manager, Goddard

    Ramesh Kakar, GPM program scientist, Headquarters

    Gail Skofronick-Jackson, GPM deputy project scientist, Goddard

    Riko Oki, GPM/DPR program scientist, JAXA

    To view on YouTube, click here for the Mission Briefing and the Science Briefing.

High Resolution Still Images

Large images of the GPM Core spacecraft over several building, testing and integration milestones.

Educator Resources

These are elements that may be used as materials in presentations.