Mars Organic Molecule Analyzer: Animations
- Scientific consulting by:
- William Brinckerhoff
- View full credits
MOMA uses ultraviolet laser pulses to release and ionize organic compounds captured within crushed Martian surface and near-surface materials. Because each laser pulse lasts less than two billionths of a second, this process effectively ionizes more heat-resistant materials than those accessed by traditional oven-heating (pyrolysis) methods. Pulsed laser processing preserves weak molecular bonds, and enables the identification of organic compounds even in the presence of highly reactive perchlorates commonly found in Martian surface materials.
How does MOMA work? Like its predecessor instrument suite on the Curiosity rover (SAM), the MOMA investigation can: vaporize crushed Martian materials in a high-temperature oven; send the evolved volatiles through a gas chromatograph; and ionize and analyze the gases that evolve from the sample via electron ionization mass spectrometry. Unlike previous instruments, however, MOMA offers a complementary second mode of operation, laser desorption mass spectrometry, whereby pulsed ultraviolet light desorbs and ionizes organics in a single step lasting less than two nanoseconds. This mode of operation accesses a new realm of organics detection and preserves weak chemical bonds that are important for molecular identification.
In order to separate and detect different organic compounds within the same sample, MOMA employs a linear ion trap (LIT). The high-pressure operation of the LIT also enables laser processing at Mars ambient pressures. MOMA marks the first use of a linear ion trap in space, and the first ion trap (linear or 3D type) on another planet.
By drawing on a suite of advanced technologies, MOMA will hunt for direct evidence of past or present life on Mars, taking a giant leap forward in the search for life beyond Earth. The mass spectrometer subsystem of the MOMA instrument and the main electronics were built at NASA's Goddard Space Flight Center in Greenbelt, Maryland for the ExoMars Programme. The pulsed UV laser and high-temperature ovens are being developed in Germany, and the gas chromatograph in France. ExoMars is the primary Mars exploration program of the European Space Agency.
Learn more about MOMA and the Rosalind Franklin rover, or watch the narrated video.
The animations on this page are available for download in broadcast resolution and in their original frames.
The MOMA pyrolysis ovens vaporize crushed Martian samples through ramp heating. The vapor is then separated into different molecular species by running the gas through specially-coated tubes (gas chromatography columns) before being passed into the linear ion trap (LIT) mass spectrometer. Immediately before entering the LIT, the molecules flowing through the gas chromatograph pass through an electron ionization source. This gives the molecules an electric charge, enabling the LIT to filter them.
The properties of an organic molecule depend not just on its molecular formula, but also on its structure. Isobaric compounds have different formulas and structures, but the same mass-to-charge ratio (M/Z), making them difficult to tell apart. Technologies on MOMA allow it to distinguish between such compounds.
Credits
Please give credit for this item to:
NASA's Goddard Space Flight Center Conceptual Image Lab
Animator
- Krystofer Kim (KBRwyle)
Scientists
- William Brinckerhoff (NASA/GSFC) [Lead]
- Ricardo Arevalo (NASA/GSFC)
- Veronica Pinnick (NASA/GSFC)
Producer
- Dan Gallagher (KBRwyle)