Your guide to exoplanet habitability: Is anyone home?

Stars
- Activity: Some stars are more active than others.
 - Stars release UV light, X-rays, and harmful to life.
 - Some stars may be good for life, others may just be too extreme.

Planets
- Orbits: How and where a planet orbits its star is very important for its habitability.
- CO2: The movement of molten iron core is important for keeping oceans of liquid water.
- Water: Water is essential for life.
 - Some planets may have vast oceans hidden beneath their surface.

Interior
- Activity: Some stars are more active than others.
 - Stars release UV light, X-rays, and harmful to life.
 - Some stars may be good for life, others may just be too extreme.

Atmosphere
- Temperature: The larger the ice caps, the colder the atmosphere.
 - Ice caps help regulate the climate of a planet by reflecting energy.
- CO2: Ice caps help regulate the climate of a planet by reflecting energy.

Surface
- Climate: Some planets may be too extreme, too hot to support life.
 - Some planets may be too extreme, too cold to support life.
- Ocean: Deep oceans can protect early life from dangerous activity from the star.
 - Deep oceans can protect early life from dangerous activity from the star.

Water
- Ice Caps: The larger the ice caps, the colder the atmosphere.
 - Ice caps help regulate the climate of a planet by reflecting energy.

Comet
- Orbit: Some comets may have vast oceans hidden beneath their surface.
 - Some comets may have vast oceans hidden beneath their surface.

Habitability
- Size: Some planets may be too extreme, too hot to support life.
 - Some planets may be too extreme, too cold to support life.
- Age: Some planets may be too extreme, too hot to support life.
 - Some planets may be too extreme, too cold to support life.

What We Know
- Earth-like planets are likely found in close to their volatile hosts.
 - Any life could form if the core is molten.
- Earth-like planets are likely found in close to their volatile hosts.
 - Any life could form if the core is molten.

Your Guide to Exoplanet Habitability: Is Anyone Home?
- Billions of Years: The timeline of exoplanet habitability.
 - Billions of Years: The timeline of exoplanet habitability.
- Stability: The stability of each planet's orbit is important for its habitability.
 - The stability of each planet's orbit is important for its habitability.

Conclusion
- Some planets may be too extreme, too hot to support life.
 - Some planets may be too extreme, too cold to support life.
- Some planets may be too extreme, too hot to support life.
 - Some planets may be too extreme, too cold to support life.

References
- Airapetian et al. (2019).
- Wade Henning and Joshua Schlieder.
- Specific contributions from Ravi Kumar Kopparapu.