• This animation flys over the Thwaites Glacier exposing the line of grounded icebergs and into Pine Island Bay to view the Pine Island Glacier.
    ID: 3294 Visualization

    MODIS Mosaic of Antarctica view of Pine Island and Thwaites Glacier

    November 30, 2009

    NASA has released a digital image map of the Antarctic continent and surrounding islands. The Moderate Resolution Imaging Spectroradiometer (MODIS) Mosaic of Antarctica (MOA) image map is a composite of 260 swaths comprised of both Terra and Aqua MODIS images acquired between November 20, 2003 and February 29, 2004. MOA provides a cloud-free view of the ice sheet, ice shelves, and land surfaces at a grid scale of 125 m and an estimated resolution of 150 m. All land areas south of 60° S that are larger than a few hundred meters are included in the mosaic. Also included are several persistent fast ice areas and grounded icebergs. ||

    Go to this page
  • This animation flys over the Thwaites Glacier exposing the line of grounded icebergs and into Pine Island Bay to view the Pine Island Glacier.  This animation does not use ICESat topography, but it is match-framed to animation ID 3294 which does have topography.
    ID: 3318 Visualization

    MODIS Mosaic of Antarctica view of Pine Island and Thwaites Glacier without ICESat Topography

    December 1, 2005

    NASA has released a digital image map of the Antarctic continent and surrounding islands. The Moderate Resolution Imaging Spectroradiometer (MODIS) Mosaic of Antarctica (MOA) image map is a composite of 260 swaths comprised of both Terra and Aqua MODIS images acquired between November 20, 2003 and February 29, 2004. MOA provides a cloud-free view of the ice sheet, ice shelves, and land surfaces at a grid scale of 125 m and an estimated resolution of 150 m. All land areas south of 60° S that are larger than a few hundred meters are included in the mosaic. Also included are several persistent fast ice areas and grounded icebergs. ||

    Go to this page
  • This animation is match framed to animation ID 3295.  It shows the crevasses and ice floes in the Ross Ice Shelf without using the ICESat topography.
    ID: 3319 Visualization

    MODIS Mosaic of Antarctica sees the Ross Ice Shelf without ICESat Topography

    December 1, 2005

    NASA has released a digital image map of the Antarctic continent and surrounding islands. The Moderate Resolution Imaging Spectroradiometer (MODIS) Mosaic of Antarctica (MOA) image map is a composite of 260 swaths comprised of both Terra and Aqua MODIS images acquired between November 20, 2003 and February 29, 2004. MOA provides a cloud-free view of the ice sheet, ice shelves, and land surfaces at a grid scale of 125 m and an estimated resolution of 150 m. All land areas south of 60 degrees S that are larger than a few hundred meters are included in the mosaic. Also included are several persistent fast ice areas and grounded icebergs. ||

    Go to this page
  • VIDEO WITH NARRATION AND NO CAPTIONSComplete transcript available.
    ID: 3181 Visualization

    A Tour of the Cryosphere

    December 4, 2005

    A new HD version of this animation is available here.Click here to go to the media download section.The cryosphere consists of those parts of the Earth's surface where water is found in solid form, including areas of snow, sea ice, glaciers, permafrost, ice sheets, and icebergs. In these regions, surface temperatures remain below freezing for a portion of each year. Since ice and snow exist relatively close to their melting point, they frequently change from solid to liquid and back again due to fluctuations in surface temperature. Although direct measurements of the cryosphere can be difficult to obtain due to the remote locations of many of these areas, using satellite observations scientists monitor changes in the global and regional climate by observing how regions of the Earth's cryosphere shrink and expand.This animation portrays fluctuations in the cryosphere through observations collected from a variety of satellite-based sensors. The animation begins in Antarctica, showing ice thickness ranging from 2.7 to 4.8 kilometers thick along with swaths of polar stratospheric clouds. In a tour of this frozen continent, the animation shows some unique features of the Antarctic landscape found nowhere else on earth. Ice shelves, ice streams, glaciers, and the formation of massive icebergs can be seen. A time series shows the movement of iceberg B15A, an iceberg 295 kilometers in length which broke off of the Ross Ice Shelf in 2000. Moving farther along the coastline, a time series of the Larsen ice shelf shows the collapse of over 3,200 square kilometers ice since January 2002. As we depart from the Antarctic, we see the seasonal change of sea ice and how it nearly doubles the size of the continent during the winter.From Antarctica, the animation travels over South America showing areas of permafrost over this mostly tropical continent. We then move further north to observe daily changes in snow cover over the North American continent. The clouds show winter storms moving across the United States and Canada, leaving trails of snow cover behind. In a close-up view of the western US, we compare the difference in land cover between two years: 2003 when the region received a normal amount of snow and 2002 when little snow was accumulated. The difference in the surrounding vegetation due to the lack of spring melt water from the mountain snow pack is evident.As the animation moves from the western US to the Arctic region, the areas effected by permafrost are visible. In December, we see how the incoming solar radiation primarily heats the Southern Hemisphere. As time marches forward from December to June, the daily snow and sea ice recede as the incoming solar radiation moves northward to warm the Northern Hemisphere.Using satellite swaths that wrap the globe, the animation shows three types of instantaneous measurements of solar radiation observed on June 20, 2003: shortwave (reflected) radiation, longwave (thermal) radiation and net flux (showing areas of heating and cooling). Correlation between reflected radiation and clouds are evident. When the animation fades to show the monthly global average net flux, we see that the polar regions serve to cool the global climate by radiating solar energy back into space throughout the year.The animation shows a one-year cycle of the monthly average Arctic sea ice concentration followed by the mean September minimum sea ice for each year from 1979 through 2004. A red outline indicates the mean sea ice extent for September over 22 years, from 1979 to 2002. The minimum Arctic sea ice animation clearly shows how over the last 5 years the quantity of polar ice has decreased by 10 - 14% from the 22 year average.While moving from the Arctic to Greenland, the animation shows the constant motion of the Arctic polar ice using daily measures of sea ice activity. Sea ice flows from the Arctic into Baffin Bay as the seasonal ice expands southward. As we draw close to the Greenland coast, the animation shows the recent changes in the Jakobshavn glacier. Although Jakobshavn receded only slightly from 1042 to 2001, the animation shows significant recession over the past three years, from 2002 through 2004.This animation shows a wealth of data collected from satellite observations of the cryosphere and the impact that recent cryospheric changes are making on our planet.For more information on the data sets used in this visualization, visit NASA's EOS DAAC website. ||

    Go to this page
  • The short version of the Cryosphere Tour, with narration and music.
    ID: 3355 Visualization

    A Short Tour of the Cryosphere

    May 20, 2006

    A newer version of this animation is available here.This narrated, 5-minute animation shows a wealth of data collected from satellite observations of the cryosphere and the impact that recent cryospheric changes are making on our planet. This is a shorter version of a narrated, 7 1/2 minute animation entitled 'A Tour of the Cryosphere'.See the above link for a detailed description of the full animation.Two sections have been removed from the original animation: one showing a flyby of the South Pole station and glaciers feeding the Ross Ice Shelf and one showing solar data related to the Earth's energy balance.For more information on the data sets used in this visualization, visit NASA's EOS DAAC website. ||

    Go to this page
  • This animation begins by showing the Antarctic continent through the eyes of the Aqua/AMSR-E sensor.  As the camera approaches the Lake area we transition to the MODIS Mosaic Of Antarctica (MOA) revealing a December 2002 3-day average of MODIS data over Lake Englehardt.  This then does a quick transition to a December 2005 3-day MODIS average.  Next, an orange swathe of ICESat data passes over the lake and ICESat elevation data taken on October 24, 2003 is extruded from the surface eventually hovering above the December 2002 3-day MODIS average.  The orange ICESat slice then morphs into ICESat elevation data taken on June 2, 2006 for this same region.  As the ICESat elevation data dips, the underlying MODIS data transforms again into the December 2005 3-day average revealing the corresponding lake depression.
    ID: 3403 Visualization

    Antarctic Plumbing: Lake Englehardt's Subglacial Hydraulic System

    February 19, 2007

    ICESat satellite laser altimeter elevation profiles from 2003-2006 collected over West Antarctica reveal numerous regions of temporally varying elevation. MODIS satellite imagery over roughly the same time period collaborates where these subglacial fluctuations have occurred. These observations have led scientists to conclude that subglacial water movement is happening in this lake region, revealing a widespread, dynamic subglacial water system that could provide important insights into ice flow and the mass balance of Antarctica's ice. ||

    Go to this page
  • This animation shows the flow of the Jakobshavn glacier in 2000, followed by a time series of the glacier's retreat from 2001 through 2006. When pulling away from Greenland, a colored overlay shows the changes in the ice sheet elevation between 2003 and 2006.
    ID: 3434 Visualization

    Updated Jakobshavn Glacier Calving Front Retreat from 2001 through 2006

    June 11, 2007

    Since measurements of Jakobshavn Isbrae were first taken in 1850, the glacier has gradually receded, finally coming to rest at a certain point for the past 5 decades. However, from 1997 to 2006, the glacier has begun to recede again, this time almost doubling in speed. The finding is important for many reasons. As more ice moves from glaciers on land into the ocean, ocean sea levels raise. Jakobshavn Isbrae is Greenland's largest outlet glacier, draining 6.5 percent of Greenland's ice sheet area. The ice stream's speed-up and near-doubling of ice flow from land into the ocean has increased the rate of sea level rise by about .06 millimeters (about .002 inches) per year, or roughly 4 percent of the 20th century rate of sea level increase. This animation shows the glacier's flow in 2000, along with changes in the glacier's calving front between 2001 and 2006.This animation is an update of and extension to animation ID #3374. In this version, a pause is added on the approach to the Jakobshavn glacier in order to highlight the meltwater lakes visible on the Greenland ice sheet. In addition, semi-transparent overlays and text indicate different regions of the glacier before the calving lines are shown. After the calving front retreat, an additional segment shows a zoom to a global view. During the pull out, historic calving front locations are shown followed by a color overlay showing regions of increase and decrease in the Greenland ice sheet. ||

    Go to this page
  • The complete narrated visualizationThis video is also available on our YouTube channel.
    ID: 3619 Visualization

    A Tour of the Cryosphere 2009

    September 1, 2009

    The cryosphere consists of those parts of the Earth's surface where water is found in solid form, including areas of snow, sea ice, glaciers, permafrost, ice sheets, and icebergs. In these regions, surface temperatures remain below freezing for a portion of each year. Since ice and snow exist relatively close to their melting point, they frequently change from solid to liquid and back again due to fluctuations in surface temperature. Although direct measurements of the cryosphere can be difficult to obtain due to the remote locations of many of these areas, using satellite observations scientists monitor changes in the global and regional climate by observing how regions of the Earth's cryosphere shrink and expand.This animation portrays fluctuations in the cryosphere through observations collected from a variety of satellite-based sensors. The animation begins in Antarctica, showing some unique features of the Antarctic landscape found nowhere else on earth. Ice shelves, ice streams, glaciers, and the formation of massive icebergs can be seen clearly in the flyover of the Landsat Image Mosaic of Antarctica. A time series shows the movement of iceberg B15A, an iceberg 295 kilometers in length which broke off of the Ross Ice Shelf in 2000. Moving farther along the coastline, a time series of the Larsen ice shelf shows the collapse of over 3,200 square kilometers ice since January 2002. As we depart from the Antarctic, we see the seasonal change of sea ice and how it nearly doubles the apparent area of the continent during the winter.From Antarctica, the animation travels over South America showing glacier locations on this mostly tropical continent. We then move further north to observe daily changes in snow cover over the North American continent. The clouds show winter storms moving across the United States and Canada, leaving trails of snow cover behind. In a close-up view of the western US, we compare the difference in land cover between two years: 2003 when the region received a normal amount of snow and 2002 when little snow was accumulated. The difference in the surrounding vegetation due to the lack of spring melt water from the mountain snow pack is evident.As the animation moves from the western US to the Arctic region, the areas affected by permafrost are visible. As time marches forward from March to September, the daily snow and sea ice recede and reveal the vast areas of permafrost surrounding the Arctic Ocean.The animation shows a one-year cycle of Arctic sea ice followed by the mean September minimum sea ice for each year from 1979 through 2008. The superimposed graph of the area of Arctic sea ice at this minimum clearly shows the dramatic decrease in Artic sea ice over the last few years.While moving from the Arctic to Greenland, the animation shows the constant motion of the Arctic polar ice using daily measures of sea ice activity. Sea ice flows from the Arctic into Baffin Bay as the seasonal ice expands southward. As we draw close to the Greenland coast, the animation shows the recent changes in the Jakobshavn glacier. Although Jakobshavn receded only slightly from 1964 to 2001, the animation shows significant recession from 2001 through 2009. As the animation pulls out from Jakobshavn, the effect of the increased flow rate of Greenland costal glaciers is shown by the thinning ice shelf regions near the Greenland coast.This animation shows a wealth of data collected from satellite observations of the cryosphere and the impact that recent cryospheric changes are making on our planet.For more information on the data sets used in this visualization, visit NASA's EOS DAAC website.Note: This animation is an update of the animation 'A Short Tour of the Cryosphere', which is itself an abridged version of the animation 'A Tour of the Cryosphere'. The popularity of the earlier animations and their continuing relevance prompted us to update the datasets in parts of the animation and to remake it in high definition. In certain cases, our experiences in using the earlier work have led us to tweak the presentation of some of the material to make it clearer. Our thanks to Dr. Robert Bindschadler for suggesting and supporting this remake. ||

    Go to this page
  • This animation shows the flow of the Jakobshavn glacier in 2000, followed by a time series of the glacier's retreat from 2001 through 2006. When pulling away from Greenland, a colored overlay shows the changes in the ice sheet elevation between 2003 and 2006.
    ID: 3467 Visualization

    Updated Jakobshavn Glacier Calving Front Retreat from 2001 through 2006 with Blue/White Elevation Change over Greenland

    October 4, 2007

    Since measurements of Jakobshavn Isbrae were first taken in 1850, the glacier gradually receded until about 1950, where it remained stable for the past 5 decades. However, from 1997 to 2006, the glacier has begun to recede again, this time almost doubling in speed. The finding is important for many reasons. As more ice moves from glaciers on land into the ocean, ocean sea levels raise. Jakobshavn Isbrae is Greenland's largest outlet glacier, draining 6.5 percent of Greenland's ice sheet area. The ice stream's speed-up and near-doubling of ice flow from land into the ocean has increased the rate of sea level rise by about .06 millimeters (about .002 inches) per year, or roughly 4 percent of the 20th century rate of sea level increase. This animation shows the glacier's flow in 2000, along with changes in the glacier's calving front between 2001 and 2006.This animation is an update of, and extension to, animation IDs #3374 and #3434.In this version, the pause on the approach to the Jakobshavn glacier where the meltwater lakes on the Greenland ice sheet are visible is shortened. In addition, the colors showing regions of elevation increase and decrease over the Greenland ice sheet are modified. ||

    Go to this page
  • A wide shot of the Bering Glacier, October 1986.
    ID: 2968 Visualization

    Retreating Glaciers Spur Alaskan Earthquakes

    August 2, 2004

    The study examined the likelihood of increased earthquake activity in southern Alaska as a result of rapidly melting glaciers. As glaciers melt they lighten the load on the Earth's crust. Tectonic plates, that are mobile pieces of the Earth's crust, can then move more freely. ||

    Go to this page