• This plot shows the positions of nine new pulsars (magenta) discovered by Fermi and of an unusual millisecond pulsar (green) that Fermi data reveal to be the youngest such object known. With this new batch of discoveries, Fermi has detected more than 100 pulsars in gamma rays. Credit: Credit: AEI and NASA/DOE/Fermi LAT Collaboration
    ID: 10858 Produced Video

    Fermi Discovers Youngest Millisecond Pulsar

    November 3, 2011

    An international team of scientists using NASA's Fermi Gamma-ray Space Telescope has discovered a surprisingly powerful millisecond pulsar that challenges existing theories about how these objects form. At the same time, another team has exploited improved analytical techniques to locate nine new gamma-ray pulsars in Fermi data.A pulsar, also called a neutron star, is the closest thing to a black hole astronomers can observe directly, crushing half a million times more mass than Earth into a sphere no larger than a city. This matter is so compressed that even a teaspoonful weighs as much as Mount Everest.Typically, millisecond pulsars are a billion years or more old, ages commensurate with a stellar lifetime. But in the Nov. 3 issue of Science, the Fermi team reveals a bright, energetic millisecond pulsar only 25 million years old.The object, named PSR J1823—3021A, lies within NGC 6624, a spherical assemblage of ancient stars called a globular cluster, one of about 160 similar objects that orbit our galaxy. The cluster is about 10 billion years old and lies about 27,000 light-years away toward the constellation Sagittarius."With this new batch of pulsars, Fermi now has detected more than 100, which is an exciting milestone when you consider that before Fermi's launch only seven of them were known to emit gamma rays," said Pablo Saz Parkinson, an astrophysicist at the Santa Cruz Institute for Particle Physics, University of California Santa Cruz. ||

    Go to this page
  • Animation showing how the photons may have acted if the structure of space-time was foamy.  However, Fermi data has shown that that effect does not exist.
    ID: 10489 Produced Video

    Gamma-ray Burst Photon Delay as Expected by Quantum Gravity

    October 28, 2009

    In this illustration, one photon (purple) carries a million times the energy of another (yellow). Some theorists predict travel delays for higher-energy photons, which interact more strongly with the proposed frothy nature of space-time. Yet Fermi data on two photons from a gamma-ray burst fail to show this effect, eliminating some approaches to a new theory of gravity. ||

    Go to this page
  • Animation showing the star's orbit.
    ID: 10507 Produced Video

    Gamma-Rays from High-Mass X-Ray Binaries

    October 28, 2009

    In its first year, NASA's Fermi Gamma-ray Space Telescope discovered GeV (billions of electron volts) intensity variations revealing orbital motion in high-mass X-ray binaries (HMXBs). These are systems where a compact companion, such as a neutron star or a black hole, rapidly orbits a hot, young, massive star. The first examples include LSI +61 303, which sports a 26-day orbital period, and LS 5039 (3.9 days). This animation shows such a system. When the compact object lies far from its host star, TeV (trillions of electron volts) gamma-rays (white) are seen by ground-based gamma-ray observatories. But, as the object plunges closer to the star, the TeV emission is quenched and GeV emission turns on. Interactions by accelerated particles from the compact source with gas encircling the star — or in some systems, the star's light itself — is thought to be responsible for this change. ||

    Go to this page
  • Simple animation of proton-proton interaction resulting in netural pion that decays into two gamma rays.
    ID: 10567 Produced Video

    How Cosmic-ray Protons Make Gamma rays

    February 13, 2010

    In the simplest and most common interaction, a cosmic-ray proton strikes another proton. The protons survive the collision, but their interaction creates an unstable particle — a pion — with only 14 percent the mass of a proton. In 10 millionths of a billionth of a second, the pion decays into a pair of gamma-ray photons. More complex scenarios occur when cosmic-ray protons strike nuclei containing greater numbers of particles. ||

    Go to this page
  • This animation shows a high-energy photon (blue coil) colliding with a free electron (red ball), which causes the release of a gamma-ray (purple flash).
    ID: 20113 Animation

    Gamma Ray Creation

    September 7, 2007

    Gamma rays are the highest-energy forms of light in the electromagnetic spectrum and they can have over a billion times the energy of the type of light visible to the human eye. Gamma rays can be created in several different ways: a high-energy particle can collide with another particle, a particle can collide and annihilate with its anti-particle, an element can undergo radioactive decay, or a charged particle can be accelerated. In this animation, we see a high-energy photon collide with a free electron, which causes the creation of a gamma-ray. ||

    Go to this page
  • This beauty shot begins with the earth in full view and pans to reveal the spacecraft in orbit.
    ID: 20119 Animation

    The GLAST (Fermi) Spacecraft in Orbit

    September 14, 2007

    GLAST will be launched into a circular orbit around the Earth at an altitude of about 560 km (350 miles). At that altitude, the observatory will circle Earth every 90 minutes. In sky-survey mode, GLAST will be able to view the entire sky in just two orbits, or about 3 hours. Because gamma rays in the GLAST's energy band are unable to penetrate the Earth's atmostphere, it is essential that GLAST perform its observations from space. ||

    Go to this page
  • This beauty shot provides a 360-degree view of the spacecraft without a simulated gamma ray sky.
    ID: 20120 Animation

    360 Degrees of GLAST

    September 14, 2007

    GLAST will carry two instruments: the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM). The LAT is GLAST's primary instrument and consists of four components: the Tracker, the Calorimeter, the Anticoincidence Detector (ACD), and the Data Acquisition System (DAQ). These instrument components working together will detect gamma rays by using Einstein's famous equation (E=mc(squared) in a technique known as pair production. The GLAST Burst Monitor is a complementary instrument and consists of low-energy detectors, high-energy detectors, and data processing unit. The GBM can see all directions at once, except for the area where Earth blocks its view. When the GBM detects a bright gamma-ray burst, it immediately sends a signal to the LAT to observe that area of the sky. ||

    Go to this page
  • This  beauty shot shows an over-the-shoulder view of the spacecraft.
    ID: 20121 Animation

    GLAST's New Window on the Universe

    September 14, 2007

    The Universe is home to numerous extoic and beautiful phenomena, some of which can generate inconceiveable amounts of energy. GLAST (Gamma-ray Large Area Telescope) will open this high-energy world as the first imaging gamma-ray observatory to survey the entire sky every day and with high sensitivity. Astronomers will gain a superior tool to study how black holes, notorious for pulling matter in, can accelerate jets of gas outward at fantastic speeds. Physicists will be able to search for signals of new fundamental processes that are inaccessable in ground-based accelerators and observatories. And scientists will have a unique opportunity to learn about the every-changing Universe at extreme energies. ||

    Go to this page
  • This animation shows a gamma ray (purple) entering a corner tower of the Tracker. After the electron (red) and positron (blue) cascade down the tower, their incoming paths (red/blue) combine to show the original path (purple) of the incoming gamma ray that created them.
    ID: 20122 Animation

    Fermi's LAT Instrument

    February 25, 2012

    Fermi's Large Area Telescope (LAT) detects particles produced in a physical process known as pair production that epitomizes Einstein's famous equation, E=mc2. When a gamma ray, which is pure energy (E), slams into a layer of tungsten in one of the tracking towers that compose the LAT, it creates mass (m) in the form of a pair of subatomic particles, an electron and its antimatter counterpart, a positron. Several layers of high-precision silicon detectors track the particles as they move through the instrument. The direction of the incoming gamma ray is determined by projecting the particle paths backward. The particles travel through the trackers until they reach a separate detector called a calorimeter, which absorbs and measures their energies. The LAT produces gamma-ray images of astronomical objects, while also determining the energy of each detected gamma ray. ||

    Go to this page
  • This animation begins with a Delta rocket launch. Once the vehicle reaches orbit, the satellite deploys into its final configuration.
    ID: 20123 Animation

    GLAST Launch and Deployment

    September 14, 2007

    GLAST's launch is scheduled for early 2008 from Cape Canaveral Air Station on Florida's eastern coast. GLAST will be carried on a Delta II Heavy launch vehicle, with 9 solid rocket boosters. The solids are actually from the Delta III series (hence the term 'heavy'), mounted on a Delta II. It has a 10-foot fairing and two stages. Stowed in the launch vehicle, the spacecraft is 9.2 feet (2.8 meters) high by 8.2 feet (2.5 meters) in diameter. Once deployed, GLAST becomes a little bit taller and much wider (15 meters) with the Ku-band antenna deployed and the solar arrays extended. ||

    Go to this page