Fermi--Cosmic Rays

Content Contact:


  • Fermi Proves Supernova Remnants Produce Cosmic Rays
    A new study using observations from NASA's Fermi Gamma-ray Space Telescope reveals the first clear-cut evidence that the expanding debris of exploded stars produces some of the fastest-moving matter in the universe. This discovery is a major step toward meeting one of Fermi's primary mission goals.

    Cosmic rays are subatomic particles that move through space at nearly the speed of light. About 90 percent of them are protons, with the remainder consisting of electrons and atomic nuclei. In their journey across the galaxy, the electrically charged particles become deflected by magnetic fields. This scrambles their paths and makes it impossible to trace their origins directly.

    Through a variety of mechanisms, these speedy particles can lead to the emission of gamma rays, the most powerful form of light and a signal that travels to us directly from its sources.

    Two supernova remnants, known as IC 443 and W44, are expanding into cold, dense clouds of interstellar gas. This material emits gamma rays when struck by high-speed particles escaping the remnants.

    Scientists have been unable to ascertain which particle is responsible for this emission because cosmic-ray protons and electrons give rise to gamma rays with similar energies. Now, after analyzing four years of data, Fermi scientists see a gamma-ray feature from both remnants that, like a fingerprint, proves the culprits are protons.

    When cosmic-ray protons smash into normal protons, they produce a short-lived particle called a neutral pion. The pion quickly decays into a pair of gamma rays. This emission falls within a specific band of energies associated with the rest mass of the neutral pion, and it declines steeply toward lower energies.

    Detecting this low-end cutoff is clear proof that the gamma rays arise from decaying pions formed by protons accelerated within the supernova remnants.

    In 1949, the Fermi telescope's namesake, physicist Enrico Fermi, suggested that the highest-energy cosmic rays were accelerated in the magnetic fields of interstellar gas clouds. In the decades that followed, astronomers showed that supernova remnants were the galaxy's best candidate sites for this process.?

    A charged particle trapped in a supernova remnant's magnetic field moves randomly throughout it and occasionally crosses through the explosion's leading shock wave. Each round trip through the shock ramps up the particle's speed by about 1 percent. After many crossings, the particle obtains enough energy to break free and escapes into the galaxy as a newborn cosmic ray.

    The Fermi discovery builds on a strong hint of neutral pion decay in W44 observed by the Italian Space Agency's AGILE gamma-ray observatory and published in late 2011.

    Watch this video on YouTube.

  • Fermi Explores Supernova Remnants
    Fermi's Large Area Telescope (LAT) resolved gamma rays with energies a billion times greater than that of visible light from supernova remnants of different ages and in different environments. W51C, W44 and IC 443 are middle-aged remnants between 4,000 and 30,000 years old. The youngest remnant, Cassiopeia A, is only 330 years old and appears to the LAT as a point source. The images bring astronomers a step closer to understanding the source of some of the universe's most energetic particles — cosmic rays. The emissions are likely the result of accelerated protons interacting with nearby gas clouds, but other possibilities have not been eliminated. Astrophysicists believe that supernova remnants are the galaxy's best candidate sites for cosmic-ray acceleration. These observations provide further validation to the notion that supernova remnants act as enormous accelerators for cosmic particles.
  • How Cosmic-ray Protons Make Gamma rays
    In the simplest and most common interaction, a cosmic-ray proton strikes another proton. The protons survive the collision, but their interaction creates an unstable particle — a pion — with only 14 percent the mass of a proton. In 10 millionths of a billionth of a second, the pion decays into a pair of gamma-ray photons. More complex scenarios occur when cosmic-ray protons strike nuclei containing greater numbers of particles.
  • Gamma rays in the Heart of Cygnus
    Located in the vicinity of the second-magnitude star Gamma Cygni, the Cygnus X star-forming region was discovered as a diffuse radio source by surveys in the 1950s. Now, a study using data from NASA's Fermi Gamma-ray Space Telescope finds that the tumult of star birth and death in Cygnus X has managed to corral fast-moving particles called cosmic rays.

    Cosmic rays are subatomic particles — mainly protons — that move through space at nearly the speed of light. In their journey across the galaxy, the particles are deflected by magnetic fields, which scramble their paths and make it impossible to backtrack the particles to their sources. Yet when cosmic rays collide with interstellar gas, they produce gamma rays — the most energetic and penetrating form of light — that travel to us straight from the source.

    The Cygnus X star factory is located about 4,500 light-years away and is believed to contain enough raw material to make two million stars like our sun. Within it are many young star clusters and several sprawling groups of related O- and B-type stars, called OB associations. One, called Cygnus OB2, contains 65 O stars — the most massive, luminous and hottest type — and nearly 500 B stars. These massive stars possess intense outflows that clear out cavities in the region's gas clouds. A tangled web of shockwaves associated with this process impedes the movement of cosmic rays throughout the region. Cosmic rays striking gas nuclei or photons from starlight produce the gamma rays Fermi detects.

    The release on NASA.gov is here.