GRACE Data Assimilation and GEOS-5 Forecasts
- Visualizations by:
- Trent L. Schindler
- Scientific consulting by:
- Matthew Rodell
- Produced by:
- Kathryn Mersmann
- View full credits
NASA researchers have developed new satellite-based, weekly global maps of soil moisture and groundwater wetness conditions and one to three-month U.S. forecasts of each product. While maps of current dry/wet conditions for the United States have been available since 2012, this is the first time they have been available globally.
Both the global maps and the U.S. forecasts use data from NASA and German Research Center for Geosciences’s Gravity Recovery and Climate Experiment Follow On (GRACE-FO) satellites, a pair of spacecraft that detect the movement of water on Earth based on variations of Earth’s gravity field. GRACE-FO succeeds the highly successful GRACE satellites, which ended their mission in 2017 after 15 years of operation. With the global expansion of the product, and the addition of U.S. forecasts, the GRACE-FO data are filling in key gaps for understanding the full picture of wet and dry conditions that can lead to drought.
The satellite-based observations of changes in water distribution are integrated with other data within a computer model that simulates the water and energy cycles. The model then produces, among other outputs, time-varying maps of the distribution of water at three depths: surface soil moisture, root zone soil moisture (roughly the top three feet of soil), and shallow groundwater. The maps have a resolution of 1/8th degree of latitude, or about 8.5 miles, providing continuous data on moisture and groundwater conditions across the landscape.
The new forecast product that projects dry and wet conditions 30, 60, and 90 days out for the lower 48 United States uses GRACE-FO data to help set the current conditions. Then the model runs forward in time using the Goddard Earth Observing System, Version 5 seasonal weather forecast model as input. The researchers found that including the GRACE-FO data made the resulting soil moisture and groundwater forecasts more accurate.
Both the global maps and the U.S. forecasts use data from NASA and German Research Center for Geosciences’s Gravity Recovery and Climate Experiment Follow On (GRACE-FO) satellites, a pair of spacecraft that detect the movement of water on Earth based on variations of Earth’s gravity field. GRACE-FO succeeds the highly successful GRACE satellites, which ended their mission in 2017 after 15 years of operation. With the global expansion of the product, and the addition of U.S. forecasts, the GRACE-FO data are filling in key gaps for understanding the full picture of wet and dry conditions that can lead to drought.
The satellite-based observations of changes in water distribution are integrated with other data within a computer model that simulates the water and energy cycles. The model then produces, among other outputs, time-varying maps of the distribution of water at three depths: surface soil moisture, root zone soil moisture (roughly the top three feet of soil), and shallow groundwater. The maps have a resolution of 1/8th degree of latitude, or about 8.5 miles, providing continuous data on moisture and groundwater conditions across the landscape.
The new forecast product that projects dry and wet conditions 30, 60, and 90 days out for the lower 48 United States uses GRACE-FO data to help set the current conditions. Then the model runs forward in time using the Goddard Earth Observing System, Version 5 seasonal weather forecast model as input. The researchers found that including the GRACE-FO data made the resulting soil moisture and groundwater forecasts more accurate.
Credits
Please give credit for this item to:
NASA's Scientific Visualization Studio
Visualizer
- Trent L. Schindler (USRA) [Lead]
Scientists
- Matthew Rodell (NASA/GSFC) [Lead]
- Hiroko Kato Beaudoing (University of Maryland)
Producers
- Kathryn Mersmann (KBRwyle) [Lead]
- Ellen T. Gray (NASA/HQ)
Datasets used in this visualization
Terra and Aqua BMNG (A.K.A. Blue Marble: Next Generation) (Collected with the MODIS sensor)
Credit: The Blue Marble data is courtesy of Reto Stockli (NASA/GSFC).
Dataset can be found at: http://earthobservatory.nasa.gov/Newsroom/BlueMarble/
See more visualizations using this data setGravity Recovery and Climate Experiment (GRACE) TWS Anomaly (A.K.A. Terrestrial Water Storage Anomaly)
Analysis
Gravity Recovery and Climate Experiment (GRACE) Follow-On GRACE Follow-On (A.K.A. Terrestrial Water Storage Anomaly)
Observed DataNASA/German Research Center for Geosciences
Note: While we identify the data sets used in these visualizations, we do not store any further details nor the data sets themselves on our site.
You may also like...
Loading...