Jan. 31, 2012, 8 a.m.
Short, narrated video about IBEX Linsky, ApJ, 2008). While the previous interstellar flow result seemed to fall between the two nearest clouds, the new result puts the solar system right into the local cloud. Credit: NASA/GSFC/UNH Animated view showing the neon to oxygen ratio in the neutral gas of the local cloud, as obtained with IBEX, in comparison with the ratio for the Sun and the Milky Way galaxy. There is much less oxygen in the gas of the local cloud, which presents an interesting puzzle to astronomers. Is a substantial portion of the essential ingredient for life (oxygen) locked up in interstellar dust, or does this tell us how different the conditions our immediate neighborhood are than at the birthplace of the Sun? The new IBEX measurements of the velocity of interstellar atoms definitively pinpoint the location of the Sun relative to the gas and dust in our immediate vicinity. On the left, the distribution of gas and dust around the Sun is shown, and the direction of motion of the various gas clouds are depicted by arrows. The nearest clouds are the Local Cloud and the G Cloud. On the right, the new results from IBEX solved a discrepancy and are a perfect match with the Local Cloud measurements made by looking at nearby stars. Now we know that the Sun is surrounded by the Local Cloud, while being very close to its edge.Credit: NASA/GSFC/Adler/U. Chicago/Wesleyan Alternate version The conditions necessary to make the heliosphere, namely the balance of an outward pushing stellar wind and the inward compression of surrounding interstellar gas is so common, that perhaps most stars have analogous structures, called astrospheres. Photographs of three such astrospheres are shown, as taken by various telescopes.Credit: NASA/ESA/JPL-Caltech/GSFC/SwRI Due to the protective shielding of dangerous Galactic Cosmic Rays provided by a heliosphere or astrosphere, these structures are important for the planets that orbit the respective stars. Only over the last 15 years, we have been able to detect the first astrospheres and planets around other stars (exoplanets). Here we show a zoom into the most immediate environment around the Sun, our cosmic neighborhood. The locations of known astrospheres and exoplanets are indicated, while we anticipate that many more are present and just awaiting discovery. The nearest star, alpha Centauri has an astrosphere, and we know of at least two cases where we have detected both an astrosphere and exoplanets. These systems are truly analogous to our system in which the heliosphere shields a diverse planetary system. Reformatted for TV.Credit: NASA/GSFC/Adler/U. Chicago/Wesleyan Due to the protective shielding of dangerous Galactic Cosmic Rays provided by a heliosphere or astrosphere, these structures are important for the planets that orbit the respective stars. Only over the last 15 years, we have been able to detect the first astrospheres and planets around other stars (exoplanets). Here we show a zoom into the most immediate environment around the Sun, our cosmic neighborhood. The locations of known astrospheres and exoplanets are indicated, while we anticipate that many more are present and just awaiting discovery. The nearest star, alpha Centauri has an astrosphere, and we know of at least two cases where we have detected both an astrosphere and exoplanets. These systems are truly analogous to our system in which the heliosphere shields a diverse planetary system. FULL IMAGE.Credit: NASA/Adler/U. Chicago/Wesleyan The solar journey through space is carrying us through a cluster of very low density interstellar clouds. Right now the Sun is inside of a cloud that is so tenuous that the interstellar gas detected by IBEX is as sparse as a handful of air stretched over a column that is hundreds of light years long. These clouds are identified by their motions. Labels.Credit: NASA/Adler/U. Chicago/Wesleyan The solar journey through space is carrying us through a cluster of very low density interstellar clouds. Right now the Sun is inside of a cloud that is so tenuous that the interstellar gas detected by IBEX is as sparse as a handful of air stretched over a column that is hundreds of light years long. These clouds are identified by their motions. No Labels.Credit: NASA/Adler/U. Chicago/Wesleyan Collage of images shown in the press conference.Credit: NASA/GSFC/Hubble/SwRI/CI Lab Alternate still showing the neon to oxygen ratio in the neutral gas of the local cloud, as obtained with IBEX, in comparison with the ratio for the Sun and the Milky Way galaxy.
Read more