Laser Communications Relay Demonstration (LCRD) Overview Video and Resources

  • Released Wednesday, October 24, 2018
View full credits

The Laser Communications Relay Demonstration (LCRD) will fly as a hosted payload aboard a Department of Defense spacecraft as part of the Space Test Program (STP-3) mission. LCRD will continue NASA's exploration of laser communications to support future missions to the Moon and beyond. Laser communications will enable better data rates, making possible new capabilities such as 4K ultra-high-definition streaming from beyond Earth orbit. It will also allow communications systems to become smaller, lighter, and more efficient. LCRD will demonstrate the technology over several years before laser communications becomes operational for future NASA missions.

LCRD is NASA’s first two-way, end-to-end optical relay. LCRD will relay data between two ground stations, Optical Ground Station-1 (OGS-1) at the JPL-managed Optical Communications Telescope Laboratory (OCTL) in Table Mountain, California and Optical Ground Station-2 (OGS-2) in Haleakala, Hawaii. This means it will receive data from one station before sending it on to the next, serving as a communications go-between. This mimics the way a future laser communication network might receive data from a spacecraft before forwarding it on to a ground station on Earth.

Later in its mission, LCRD will relay data between the International Space Station and the ground. This will be the first operational use of laser communications at NASA. LCRD will send data to, and receive data from, an optical communications instrument called the Integrated LCRD Low-Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T). ILLUMA-T will be the first demonstration of a fully operational, end-to-end optical communications system, providing the space station a state-of-the-art optical communications terminal with improved size, weight, and power over comparable radio-frequency communications systems.

Laser communications will enable 10 to 100 times more data transmitted back to Earth than current radio frequency systems. The infrared light used for laser communications differs from radio waves because the infrared light packs the data into significantly tighter waves, meaning ground stations can receive more data at once. While laser communications aren’t necessarily faster, more data can be transmitted in one downlink.

JPL OCTL Facility Footage
The Optical Communications Telescope Laboratory (OCTL) is involved in the development of operational strategies for ground-to-space laser beam propagation for NASA optical communication missions, including previous missions [link to https://www.nasa.gov/directorates/heo/scan/opticalcommunications/llcd/]. To get OGS-1 ready for LCRD support, engineers had to upgrade the ground station. One such upgrade involved replacing the mirrors to have better reflectivity and higher laser thresholds so that the telescope can receive and send laser signals to and from LCRD.



Credits

Please give credit for this item to:
NASA's Goddard Space Flight Center Conceptual Image Lab

Release date

This page was originally published on Wednesday, October 24, 2018.
This page was last updated on Wednesday, May 3, 2023 at 1:46 PM EDT.