2017 AGU Habitability Press Conference
Spanning Disciplines to Search for Life Beyond Earth
The search for life beyond Earth is riding a surge of creativity and innovation. Following a gold rush of exoplanet discovery over the past two decades, it is time to tackle the next step: determining which of the known exoplanets are proper candidates for life.
Scientists from NASA and two universities presented new results dedicated to this task in fields spanning astrophysics, Earth science, heliophysics and planetary science — demonstrating how a cross-disciplinary approach is essential to finding life on other worlds — at the fall meeting of the American Geophysical Union on Dec. 13, 2017, in New Orleans, Louisiana.
PANELISTS:
• Giada Arney, NASA’s Goddard Space Flight Center
• Stephen Kane, University of California-Riverside
• Katherine Garcia-Sage, NASA’s Goddard Space Flight Center/Catholic University of America
• Dave Brain, University of Colorado-Boulder
The eight planets, plus Pluto, with planetary axis tilt. Our solar system is a laboratory for studying exoplanets, and scientists use solar system worlds to validate exoplanet models.
Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington (Mercury), USGS Astrogeology Science Center (Venus, Mars), NASA's Goddard Space Flight Center/Space Telescope Science Institute (Jupiter), NASA/JPL/Space Science Institute (Saturn) and NASA's Goddard Space Flight Center (Earth, Jupiter, Uranus)
A visualization illustrating how carbon dioxide in the atmosphere travels around Earth, produced by a computer model called GEOS-5, created by scientists at NASA's Goddard Space Flight Center’s Global Modeling and Assimilation office. Much the way scientists remotely study gases in Earth’s atmosphere, scientists and engineers are developing methods to one day remotely study exoplanets' atmospheres in search of biosignatures.
Credit: NASA

Since Earth (at right) and Venus (at left) are so close in size and yet so different in terms of their prospects for habitability, Kane is interested in developing methods for distinguishing Earth- and Venus-analogs in other planetary systems, as a way of identifying potentially habitable terrestrial planets.
Credit: NASA
Scientists must also consider how the qualities of a host star and a planet’s electromagnetic environment — which can shield it from harsh stellar radiation — either hinder or help habitability. Data from NASA's Solar Dynamics Observatory, or SDO, shows flares and coronal mass ejections on the Sun, the effects of which are collectively known as space weather.
Credit: NASA
Credits
Please give credit for this item to:
NASA's Goddard Space Flight Center
-
Scientists
- David Brain (University of Colorado Boulder)
- Giada Arney (NASA)
- Katherine Garcia-Sage (Catholic University of America)
- Stephen Kane (University of California-Riverside)
-
Support
- Dan Gallagher (KBR Wyle Services, LLC)
- Joy Ng (KBR Wyle Services, LLC)
- Kathalina Tran (SGT)