Jan. 11, 2021, 11:10 a.m.
From late 2003 into 2004, Hubble captured its iconic Ultra Deep Field image. It changed our understanding of the universe. With 100 times more coverage,what could happen if the Nancy Grace Roman Space Telescope did the same?Music: from Universal Production MusicComplete transcript available. || Comparative image of the Hubble Ultra Deep Field to scale with the Roman field of view. || The same amazing resolution, but on a much larger scale! @NASAHubble gave the world the iconic deep field images that captured thousands of galaxies, and the Roman space telescope would be able to do it 100 times larger and capture millions! || This zoom-out animation begins with a view of the Hubble Ultra Deep Field (outlined in blue), which represents the deepest portrait of the universe ever achieved by humankind, at visible, ultraviolet and near-infrared wavelengths. The view then expands to show a wider Hubble survey of that area of sky (white outline), which captured about 265,000 galaxies in a large mosaic. Expanding further, we see the Hubble data overlaid on a ground-based view using data from the Digitized Sky Survey.An orange outline shows the field of view of NASA’s upcoming Nancy Grace Roman Space Telescope. Roman’s 18 detectors will be able to observe an area of sky at least 100 times larger than the Hubble Ultra Deep Field at one time, with the same crisp sharpness as Hubble.Credit: NASA, ESA, A. Koekemoer (STScI), and A. Pagan (STScI) || This composite image illustrates the possibility of a Roman Space Telescope “ultra deep field” observation. In a deep field, astronomers collect light from a patch of sky for an extended period of time to reveal the faintest and most distant objects. This view centers on the Hubble Ultra Deep Field (outlined in blue), which represents the deepest portrait of the universe ever achieved by humankind, at visible, ultraviolet and near-infrared wavelengths. Two insets reveal stunning details of the galaxies within the field.Beyond the Hubble Ultra Deep Field, additional observations obtained over the past two decades have filled in the surrounding space. These wider Hubble observations reveal over 265,000 galaxies, but are much shallower than the Hubble Ultra Deep field in terms of the most distant galaxies observed.These Hubble images are overlaid on an even wider view using ground-based data from the Digitized Sky Survey. An orange outline shows the field of view of NASA’s upcoming Nancy Grace Roman Space Telescope. Roman’s 18 detectors will be able to observe an area of sky at least 100 times larger than the Hubble Ultra Deep Field at one time, with the same crisp sharpness as Hubble.Credit: NASA, ESA, and A. Koekemoer (STScI) Acknowledgement: Digitized Sky Survey || This composite image illustrates the possibility of a Roman Space Telescope “ultra deep field” observation. In a deep field, astronomers collect light from a patch of sky for an extended period of time to reveal the faintest and most distant objects. This view centers on the Hubble Ultra Deep Field (outlined in blue), which represents the deepest portrait of the universe ever achieved by humankind, at visible, ultraviolet and near-infrared wavelengths. Two insets reveal stunning details of the galaxies within the field.Beyond the Hubble Ultra Deep Field, additional observations obtained over the past two decades have filled in the surrounding space. These wider Hubble observations reveal over 265,000 galaxies, but are much shallower than the Hubble Ultra Deep field in terms of the most distant galaxies observed.These Hubble images are overlaid on an even wider view using ground-based data from the Digitized Sky Survey. An orange outline shows the field of view of NASA’s upcoming Nancy Grace Roman Space Telescope. Roman’s 18 detectors will be able to observe an area of sky at least 100 times larger than the Hubble Ultra Deep Field at one time, with the same crisp sharpness as Hubble.Credit: NASA, ESA, and A. Koekemoer (STScI) Acknowledgement: Digitized Sky Survey
Read more